神经网络超参数优化:网格搜索完整实现指南
0. 前言
我们已经学习了如何使用随机搜索获得较好的超参数优化 (Hyperparameter Optimization
, HPO
) 结果,但它耗时过长,为了寻找快速且准确的自动 HPO
,需要使用更高级的技术。一种简单有效的技术是网格搜索,特别适用于参数空间较小且相对离散的情况。在本节中,我们将介绍网格搜索的基本原理,并实现网格搜索自动超参数优化。
1. 网格搜索
网格搜索 (Grid Search
) 的工作原理是将搜索区域按照网格模式划分,并系统地遍历网格中的每个单元。网格搜索在二维空间中易于进行可视化,但该技术对于任何维数的问题都是有效的。
下图展示了随机搜索和网格搜索在超参数空间中的比较,图中展示了一种可能的网格遍历模式,在每个单元格中评估学习率和中间层变量。网格搜索是一种有效的方法,可以以有条不紊且高效的方式评估一系列可能的组合。
2. 使用网格搜索自动超参数优化
在本节中,我们将修改随机搜索自动超参数优化,使用更复杂的网格搜索技术。虽然这种技术更强大