神经网络超参数优化:网格搜索完整实现指南

神经网络超参数优化:网格搜索完整实现指南

0. 前言

我们已经学习了如何使用随机搜索获得较好的超参数优化 (Hyperparameter Optimization, HPO) 结果,但它耗时过长,为了寻找快速且准确的自动 HPO,需要使用更高级的技术。一种简单有效的技术是网格搜索,特别适用于参数空间较小且相对离散的情况。在本节中,我们将介绍网格搜索的基本原理,并实现网格搜索自动超参数优化。

1. 网格搜索

网格搜索 (Grid Search) 的工作原理是将搜索区域按照网格模式划分,并系统地遍历网格中的每个单元。网格搜索在二维空间中易于进行可视化,但该技术对于任何维数的问题都是有效的。
下图展示了随机搜索和网格搜索在超参数空间中的比较,图中展示了一种可能的网格遍历模式,在每个单元格中评估学习率和中间层变量。网格搜索是一种有效的方法,可以以有条不紊且高效的方式评估一系列可能的组合。

网格搜索

2. 使用网格搜索自动超参数优化

在本节中,我们将修改随机搜索自动超参数优化,使用更复杂的网格搜索技术。虽然这种技术更强大

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

盼小辉丶

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值