卷积自编码器详解与实现
0. 前言
一张高清图像中可能包含数万个像素、文本中则可能包含成千上万个不同的单词。因此,必须将它们表示为数千维的向量,在如此高维空间中表示向量的导致我们无法高效地进行向量间的计算。
以较小的维度表示这些复杂数据有助于数据的传输、将相似的数据进行分组等。数据编码是一种无监督学习的方式,以在较低维度上表示输入,保留有关相似图像的信息,同时将信息损失降至最低,在深度学习 (Deep learning
, DL
) 领域,自编码器 (AutoEncoder
, AE
) 便是一种流行的数据编码技术。
AE
是 DL
的基础模型,引入了无监督和表示学习。AE
有多种变体,从全连接网络到深度卷积神经网络,在本节中,将介绍深度卷积自编码器,并使用 Keras
构建、训练卷积自编码器。
1. 自编码器原理
自编码器 (AutoEncoder
) 常用于与介绍无监督和表示学习相关的概念。无监督学习 (Unsupervised learning
) 是使用没有标签的数据对模型进行训练,表示学习 (Representative learning
) 是训练模