卷积自编码器 (Convolutional AutoEncoder) 详解与实现

0. 前言

一张高清图像中可能包含数万个像素、文本中则可能包含成千上万个不同的单词。因此,必须将它们表示为数千维的向量,在如此高维空间中表示向量的导致我们无法高效地进行向量间的计算。
以较小的维度表示这些复杂数据有助于数据的传输、将相似的数据进行分组等。数据编码是一种无监督学习的方式,以在较低维度上表示输入,保留有关相似图像的信息,同时将信息损失降至最低,在深度学习 (Deep learning, DL) 领域,自编码器 (AutoEncoder, AE) 便是一种流行的数据编码技术。
AEDL 的基础模型,引入了无监督和表示学习。AE 有多种变体,从全连接网络到深度卷积神经网络,在本节中,将介绍深度卷积自编码器,并使用 Keras 构建、训练卷积自编码器。

1. 自编码器原理

自编码器 (AutoEncoder) 常用于与介绍无监督和表示学习相关的概念。无监督学习 (Unsupervised learning) 是使用没有标签的数据对模型进行训练,表示学习 (Representative learning) 是训练模

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

盼小辉丶

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值