TensorFlow深度学习实战(14)——循环神经网络详解

0. 前言

循环神经网络 (Recurrent Neural Network, RNN) 是一类特殊的神经网络结构,广泛应用于处理和分析序列数据,如文本、语音、时间序列等。与传统的神经网络不同,RNN 具有记忆功能,可以通过循环连接处理序列中各个元素之间的依赖关系。

1. 基本循环神经网络单元

1.1 循环神经网络工作原理

传统的多层感知器神经网络假设所有输入都彼此独立,但这种假设对许多类型的序列数据并不成立。例如,句子中的单词、乐曲中的音符、随时间变化的股票价格,甚至化合物中的分子,都是一个元素的出现取决于其前面元素的序列。
循环神经网络 (Recurrent Neural Network, RNN) 单元通过使用隐藏状态(或记忆)来包含这种依赖关系,该隐藏状态保存到目前为止所见内容的要点。任意时刻的隐藏状态值是前一时刻的隐藏状态值和当前时刻输入值的函数,即:

评论 15
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

盼小辉丶

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值