[Luogu P2050] [BZOJ 2879] [NOI2012]美食节

洛谷传送门
BZOJ传送门

题目描述

CZ市为了欢迎全国各地的同学,特地举办了一场盛大的美食节。作为一个喜欢尝鲜的美食客,小M自然不愿意错过这场盛宴。他很快就尝遍了美食节所有的美食。然而,尝鲜的欲望是难以满足的。尽管所有的菜品都很可口,厨师做菜的速度也很快,小M仍然觉得自己桌上没有已经摆在别人餐桌上的美食是一件无法忍受的事情。于是小M开始研究起了做菜顺序的问题,即安排一个做菜的顺序使得同学们的等待时间最短。小M发现,美食节共有 n n n种不同的菜品。每次点餐,每个同学可以选择其中的一个菜品。总共有m个厨师来制作这些菜品。当所有的同学点餐结束后,菜品的制作任务就会分配给每个厨师。然后每个厨师就会同时开始做菜。厨师们会按照要求的顺序进行制作,并且每次只能制作一人份。此外,小M还发现了另一件有意思的事情: 虽然这 m m m个厨师都会制作全部的 n n n种菜品,但对于同一菜品,不同厨师的制作时间未必相同。他将菜品用 1 , 2 , . . . , n 1, 2, ..., n 1,2,...,n依次编号,厨师用 1 , 2 , . . . , m 1, 2, ..., m 1,2,...,m依次编号,将第 j j j个厨师制作第 i i i种菜品的时间记为 t i , j t_{i,j} ti,j 。小M认为:每个同学的等待时间为所有厨师开始做菜起,到自己那份菜品完成为止的时间总长度。换句话说,如果一个同学点的菜是某个厨师做的第 k k k道菜,则他的等待时间就是这个厨师制作前 k k k道菜的时间之和。而总等待时间为所有同学的等待时间之和。现在,小M找到了所有同学的点菜信息: 有 p i p_i pi 个同学点了第 i i i种菜品( i = 1 , 2 , . . . , n i=1, 2, ..., n i=1,2,...,n)。他想知道的是最小的总等待时间是多少。

输入输出格式

输入格式:

输入文件的第 1 1 1行包含两个正整数 n n n m m m,表示菜品的种数和厨师的数量。 第 2 2 2行包含 n n n个正整数,其中第 i i i个数为 p i p_i pi,表示点第 i i i种菜品的人数。 接下来有 n n n行,每行包含 m m m个非负整数,这 n n n行中的第 i i i行的第 j j j个数为 t i , j t_{i,j} ti,j,表示第 j j j个厨师制作第 i i i种菜品所需的时间。 输入文件中每行相邻的两个数之间均由一个空格隔开,行末均没有多余空格。

输出格式:

输出仅一行包含一个整数,为总等待时间的最小值。

输入输出样例

输入样例#1:
3 2 
3 1 1 
5 7 
3 6 
8 9
输出样例#1:
47

说明

厨师1先制作 1 1 1份菜品2,再制作2份菜品1。点这3道菜的3个同学的等待时间分别为3,3+5=8,3+5+5=13。

厨师2先制作 1 1 1份菜品1,再制作1份菜品3。点这2道菜的2个同学的等待时间分别为7,7+9=16。

总等待时间为3+8+13+7+16=47。

虽然菜品1和菜品3由厨师1制作更快,如果这些菜品都由厨师1制作,总等待时间反而更长。如果按上述的做法,将1份菜品1和1份菜品3调整到厨师2制作,这样厨师2不会闲着,总等待时间更短。

可以证明,没有更优的点餐方案。 每组数据的 n n n m m m p p p值如下:

测试点编号nmp
1n = 5m = 5p = 10
2n = 40m = 1p = 400
3n = 40m = 2p = 300
4n = 40m = 40p = 40
5n = 5m = 40p = 100
6n = 10m = 50p = 200
7n = 20m = 60p = 400
8n = 40m = 80p = 600
9n = 40m = 100p = 800
10n = 40m = 100p = 800

对于100%的数据, n ≤ 40 , m ≤ 100 , p ≤ 800 , t i , j ≤ 1000 n \le 40, m \le 100, p \le 800, t_{i,j} \le 1000 n40,m100,p800,ti,j1000 (其中 p = ∑ p i p = ∑p_i p=pi

解题分析

这道题就是SCOI2007修车的究极加强版, 但我们如果直接建图的话会T掉。

考虑每次我们增广的时候都会贪心选择最短的边得到一条新流, 那么我们先只建出所有厨师倒数第一个做的菜代表的点, 然后每次向前扩展, 这样总点数不会超过 p + n + m p+n+m p+n+m, 可以以 O ( ? ? ? ) O(???) O(???)的复杂度通过这道题。

代码如下:

#include <cstdio>
#include <cstring>
#include <cmath>
#include <cstdlib>
#include <cctype>
#include <algorithm>
#include <queue>
#define R register
#define IN inline
#define W while
#define gc getchar()
#define MX 100500
#define INF 1e8
#define S 0
#define get(id, ord) (tot * (id - 1) + ord + n)
template <class T>
IN void in(T &x)
{
    x = 0; R char c = gc;
    for (; !isdigit(c); c = gc);
    for (;  isdigit(c); c = gc)
    x = (x << 1) + (x << 3) + c - 48;
}
template <class T> IN T max(T a, T b) {return a > b ? a : b;}
template <class T> IN T min(T a, T b) {return a < b ? a : b;}
int cnt = -1, n, m, tot, ans, T;
int head[MX], cst[45][105];
int pre[MX], dis[MX], del[MX];
bool inq[MX];
struct Edge {int to, cst, flow, nex;} edge[MX * 10];
IN void add(R int from, R int to, R int fl, R int cost)
{
    edge[++cnt] = {to, cost, fl, head[from]}, head[from] = cnt;
    edge[++cnt] = {from, -cost, 0, head[to]}, head[to] = cnt;
}
namespace MCMF
{
    std::queue <int> q;
    IN bool SPFA()
    {
        std::memset(dis, 63, sizeof(dis));
        dis[S] = 0; del[S] = INF; q.push(S);
        R int now;
        W (!q.empty())
        {
            now = q.front(); q.pop();
            for (R int i = head[now]; ~i; i = edge[i].nex)
            {
                if (dis[edge[i].to] > dis[now] + edge[i].cst && edge[i].flow)
                {
                    dis[edge[i].to] = dis[now] + edge[i].cst;
                    del[edge[i].to] = min(del[now], edge[i].flow);
                    pre[edge[i].to] = i;
                    if (!inq[edge[i].to]) q.push(edge[i].to), inq[edge[i].to] = true;;
                }
            }
            inq[now] = false;
        }
        return dis[T] < INF;
    }
    IN void updata()
    {
        ans += del[T] * dis[T]; 
        R int now = T, pr;
        W (now)
        {
            pr = pre[now];
            edge[pr].flow -= del[T];
            edge[pr ^ 1].flow += del[T];
            now = edge[pr ^ 1].to;
        }
        now = edge[pre[T] ^ 1].to + 1;
        add(now, T, 1, 0);
        int id = (now - n - 1) / tot + 1, mul = (now - n - 1) % tot + 1;
        for (R int i = 1; i <= n; ++i) add(i, now, 1, cst[i][id] * mul);
    }
    void init()
    {
        W (SPFA())
        updata();
        printf("%d", ans);
    }
}
int main(void)
{
    int foo;
    in(n), in(m);
    std::memset(head, -1, sizeof(head));
    for (R int i = 1; i <= n; ++i) in(foo), tot += foo, add(S, i, foo, 0);
    for (R int i = 1; i <= n; ++i)
    for (R int j = 1; j <= m; ++j)
    in(cst[i][j]), add(i, get(j, 1), 1, cst[i][j]);
    T = n + m * tot + 1;
    for (R int i = 1; i <= m; ++i) add(get(i, 1), T, 1, 0);
    MCMF::init();
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值