Python网络爬虫与信息提取(第一周)

本文介绍了Python爬虫的第一周学习内容,包括Requests库的安装、常用方法和异常处理,深入讲解了HTTP协议的基本概念、URL格式及资源操作。并提供了简单的爬虫代码实践,如百度、360搜索以及网络图片和IP地址归属地的爬取。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

第一周

1.Requests库

PS:官方文档
1)安装
pip install requests
2)来段代码

import requests  #导入requests库
r = requests.get('http://baidu.com') #访问百度首页
r.status_code #查看请求状态,访问成功状态码为200
r.encoding = 'utf-8'#将页面编码转成utf-8
r.text#查看网页内容
type(r)
r.headers#获取get请求获得的头部信息

3)Requests库的7个主要方法

方法说明
requests.request()构造一个请求,支撑一下个方法的基础方法
requests.get()获取HTML网页的主要方法,对应于HTTP的GET
requests.head()获取HTML网页头信息的方法,对应于HTTP的HEAD
requests.post()向HTML网页提交POST请求的方法,对应于HTTP的POST
requests.put()向HTML网页提交PUT请求的方法,对应于HTTP的PUT
requests.patch()向HTML网页提交局部修改请求,对应于HTTP的PATCH
requests.delete()向HTML网页提交删除请求,对应于HTTP的DELETE

4)理解Resquests库的异常

异常说明
requests.ConnectionError网络连接错误异常,如DNS查询失败、拒绝连接等
requests.HTTPErrorHTTP错误异常
requests.URLRequiredURL缺失异常
requests.TooManyRedirects超过最大重定向次数,产生重定向异常
requests.ConnectTimeout远程连接服务器超时异常
requests.Timeout请求URL超时,产生超时异常
r.raise_for_status()如果不是200,产生异常requests.HTTPError

5)爬取网页的通用代码框架

import requests
def getHTMLText(url):
      try:
           r = requests.get(url,timeout=30)
           r.raise_for_status() #如果状态不是200,引发HTTPError异常
           r.encoding = r.apparent__encoding
           return r.text
        except:
        return "产生异常"
if __name__=="__main__":
      url = "http://www.baidu.com"
      print(getHTMLText(url))
      

2.HTTP协议

1)HTTP,Hypertext Transfer Protocol,超文本传输协议。
HTTP是一个基于“请求与响应”模式的、无状态的应用层协议。
HTTP协议采用URL作为定位网络资源的标识。

2)URL格式

URL格式:http://host[:port][path]

host:合法的Internet主机域名或IP地址
port:端口号,缺省端口为80
path:请求资源的路径

3)HTTP协议对资源的操作

方法说明
GET请求获取URL位置的资源
HEAD请求获取URL位置的资源的响应消息报告,即获得该资源的头部信息
POST请求向URL位置的资源后附加的数据
PUT请求获取URL位置存储一个资源,覆盖原URL位置的资源
PATCH请求局部更新URL位置的资源,即改变该处资源的部分内容
DELETE请求删除URL位置存储的资源

4)HTTP协议与Requests库

HTTP协议方法Requests库的方法功能一致性
GETrequests.get()一致
HEADrequests.head()一致
POSTrequests.post()一致
PUTrequests.put()一致
PATCHrequests.patch()一致
DELETErequests.delete()一致

3.简单的爬虫代码(自己动手试试)

百度搜索全代码

import requests
keyword = 'python'
try:
   kv = {'wd':keyword}
   r = requests.get("http://www.baidu.com/s",params=kv)
   print(r.request.url)
   r.raise_for_status()
   print(len(r.text))
except:
   print('爬取失败')

360搜索全代码

import requests
keyword = 'python'
try:
   kv = {'q':keyword}
   r = requests.get("http://www.so.com/s",params=kv)
   print(r.request.url)
   r.raise_for_status()
   print(len(r.text))
except:
   print('爬取失败')

网络图片的爬取及存储

import requests
import os
url ="http://www.pptok.com/wp-content/uploads/2012/08/xunguang-4.jpg"
root = "D://pic//"
path = root + url.split('/')[-1]
try:
 if not os.path.exists(root):
     os.mkdir(root)
 if not os.path.exists(path):
     r = requests.get(url)
     with open(path,'wb') as f:
         f.write(r.content)
         f.close()
         print("文件保存成功")
 else:
     print("文件已存在")
except:
 print("爬取失败")

IP地址归属地的自动查询

import requests
url = "http://m.ip138.com/ip.asp?ip="
try:
 r = requests.get(url+'202.204.80.112')
 r.raise_for_status()
 r.encoding =r.apparent_encoding
 print(r.text[-500:])
except:
 print("爬取失败")
### RT-DETRv3 网络结构分析 RT-DETRv3 是一种基于 Transformer 的实时端到端目标检测算法,其核心在于通过引入分层密集正监督方法以及一系列创新性的训练策略,解决了传统 DETR 模型收敛慢和解码器训练不足的问题。以下是 RT-DETRv3 的主要网络结构特点: #### 1. **基于 CNN 的辅助分支** 为了增强编码器的特征表示能力,RT-DETRv3 引入了一个基于卷积神经网络 (CNN) 的辅助分支[^3]。这一分支提供了密集的监督信号,能够与原始解码器协同工作,从而提升整体性能。 ```python class AuxiliaryBranch(nn.Module): def __init__(self, in_channels, out_channels): super(AuxiliaryBranch, self).__init__() self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1) self.bn = nn.BatchNorm2d(out_channels) def forward(self, x): return F.relu(self.bn(self.conv(x))) ``` 此部分的设计灵感来源于传统的 CNN 架构,例如 YOLO 系列中的 CSPNet 和 PAN 结构[^2],这些技术被用来优化特征提取效率并减少计算开销。 --- #### 2. **自注意力扰动学习策略** 为解决解码器训练不足的问题,RT-DETRv3 提出了一种名为 *self-att 扰动* 的新学习策略。这种策略通过对多个查询组中阳性样本的标签分配进行多样化处理,有效增加了阳例的数量,进而提高了模型的学习能力和泛化性能。 具体实现方式是在训练过程中动态调整注意力权重分布,确保更多的高质量查询可以与真实标注 (Ground Truth) 进行匹配。 --- #### 3. **共享权重解编码器分支** 除了上述改进外,RT-DETRv3 还引入了一个共享权重的解编码器分支,专门用于提供密集的正向监督信号。这一设计不仅简化了模型架构,还显著降低了参数量和推理时间,使其更适合实时应用需求。 ```python class SharedDecoderEncoder(nn.Module): def __init__(self, d_model, nhead, num_layers): super(SharedDecoderEncoder, self).__init__() decoder_layer = nn.TransformerDecoderLayer(d_model=d_model, nhead=nhead) self.decoder = nn.TransformerDecoder(decoder_layer, num_layers=num_layers) def forward(self, tgt, memory): return self.decoder(tgt=tgt, memory=memory) ``` 通过这种方式,RT-DETRv3 实现了高效的目标检测流程,在保持高精度的同时大幅缩短了推理延迟。 --- #### 4. **与其他模型的关系** 值得一提的是,RT-DETRv3 并未完全抛弃经典的 CNN 技术,而是将其与 Transformer 结合起来形成混合架构[^4]。例如,它采用了 YOLO 系列中的 RepNCSP 模块替代冗余的多尺度自注意力层,从而减少了不必要的计算负担。 此外,RT-DETRv3 还借鉴了 DETR 的一对一匹配策略,并在此基础上进行了优化,进一步提升了小目标检测的能力。 --- ### 总结 综上所述,RT-DETRv3 的网络结构主要包括以下几个关键组件:基于 CNN 的辅助分支、自注意力扰动学习策略、共享权重解编码器分支以及混合编码器设计。这些技术创新共同推动了实时目标检测领域的发展,使其在复杂场景下的表现更加出色。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值