【好专栏】如何从零基础开始一步步学习计算机视觉(附文档下载!)

欢迎来到【好专栏】,本次我们给大家推荐一个专栏,名为《深度学习视觉算法工程师成长指南》,这个专栏可以让零基础的读者系统性学习计算机视觉领域的知识,走上正确的学习路线,亦可供本行业的老手查漏补缺之用。

作者 & 编辑 | Leong

专栏介绍

目前利用深度学习这个工具可以做很多事情,各大领域 (图像,语音,NLP 等),各大行业 (娱乐,金融,医疗等) 这几年都被玩的风生水起。不管是本专业还是非本专业的技术人员都有很多人投身这一行,但是学校并没有对应的学科或者说刚刚开设,老手们往往走过了很多的弯路才成为老手。

《深度学习视觉算法工程师成长指南》,从理论到实践,不忘基础,也不漏最新的研究进展;不追求全面,但追求精髓都在,路线正确。为大家建议一条完整的深度学习视觉算法工程师学习路线,完成从外行到内行的整个学习流程。借鉴广泛采用的评级机制,分为 4 个大境界,即白身、初识、不惑、有识。


每一个境界都由浅入深提供 10 多篇文章对核心知识点进行梳理,并对技术发展的最新水平进行简单介绍和展望。

第一重境界可以掌握以下内容

(1) 熟练掌握 Linux 及其环境下的各类工具的使用

(2) 熟练掌握 Python 及机器学习相关库的使用

(3) 掌握 C++ 等高性能语言的基本使用

(4) 知道如何获取和整理,理解数据

(5) 掌握相关的数学基础

(6) 了解计算机视觉的各大研究方向

(7) 了解计算机视觉的各大应用场景

(8) 了解行业的优秀研究人员,知道如何获取最新的资讯,能够熟练阅读简单的技术资料

第二重境界可以掌握以下内容

(1) 熟练掌握神经网络

(2) 培养良好的数据敏感性,知道如何正确准备和使用数据

(3) 至少熟练掌握一个深度学习框架的使用

(4) 熟悉深度学习模型的基本训练和调参,网络设计

(5) 掌握深度学习各项核心理论技术

(6) 能使用合适的优化准则熟练评估自己的算法

第三重境界可以掌握以下内容

(1) 熟练玩转数据和模型对一个任务的影响

(2) 能够准确的分析出模型的优劣,瓶颈

(3) 对于新的任务能够快速寻找和敲定方案

(4) 拥有各种各样的深刻理解深度学习模型的技能,从可视化到参数分析等等等

(5) 能够优化模型到满足业务的需求,实现工业级落地

(6) 了解行业的最新进展,并在某些领域有自己的独到理解

作者介绍

言有三,本科就读于华中科技大学,硕士保送中国科学院,先后就职于奇虎 360AI 研究院,陌陌深度学习实验室,超过 6 年计算机视觉从业经验,从传统图像算法做到深度学习。《有三 AI》号主,一年独自原创 80 万 + 字数的技术文章。知乎阅读 200 万 +,粉丝 30000+,虽然几乎不回答问题,凭借优质创作也曾连续 3 周进入每周一次的 AI / 深度学习知友墙 (一次全网仅数人)。

专栏目录

深度学习视觉算法工程师成长指南

【AI 白身境】深度学习从弃用 windows 开始

【AI 白身境】Linux 干活三板斧,shell、vim 和 git

【AI 白身境】学 AI 必备的 python 基础

【AI 白身境】深度学习必备图像基础

【AI 白身境】搞计算机视觉必备的 OpenCV 入门基础

【AI 白身境】只会用 Python?g++,CMake 和 Makefile 了解一下

【AI 白身境】学深度学习你不得不知的爬虫基础

【AI 白身境】深度学习中的数据可视化

【AI 白身境】入行 AI 需要什么数学基础:左手矩阵论,右手微积分

【AI 白身境】一文览尽计算机视觉研究方向

【AI 白身境】AI+,都加在哪些应用领域了

【AI 白身境】究竟谁是 paper 之王,全球前 10 的计算机科学家

【AI 初识境】从 3 次人工智能潮起潮落说起

【AI 初识境】从头理解神经网络 - 内行与外行的分水岭

【AI 初识境】近 20 年深度学习在图像领域的重要进展节点

【AI 初识境】激活函数:从人工设计到自动搜索

【AI 初识境】什么是深度学习成功的开始?参数初始化

【AI 初识境】深度学习模型中的 Normalization,你懂了多少?

【AI 初识境】为了围剿 SGD 大家这些年想过的那十几招

【AI 初识境】被 Hinton,DeepMind 和斯坦福嫌弃的池化,到底是什么?

【AI 初识境】如何增加深度学习模型的泛化能力

【AI 初识境】深度学习模型评估,从图像分类到生成模型

【AI 初识境】深度学习中常用的损失函数有哪些?

【AI 初识境】给深度学习新手做项目的 10 个建议

【AI 不惑境】数据压榨有多狠,人工智能就有多成功

【AI 不惑境】网络深度对深度学习模型性能有什么影响?

【AI 不惑境】网络的宽度如何影响深度学习模型的性能?

【AI 不惑境】学习率和 batchsize 如何影响模型的性能?

【AI 不惑境】残差网络的前世今生与原理

【AI 不惑境】移动端高效网络,卷积拆分和分组的精髓

【AI 不惑境】深度学习中的多尺度模型设计

【AI不惑境】计算机视觉中注意力机制原理及其模型发展和应用

发送关键词『AI 修行路』给公众号,即可获取专栏电子文档。

扫码加入有三言选知识星球,共享好资源

转载文章请后台联系

侵权必究

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

机器视觉CV

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值