Python并行化处理之Pandarallel VS Polars VS Dask

本文对比了Python中用于并行处理的Pandarallel, Polars和Dask。Pandarallel是Pandas的并行扩展,适用于已使用Pandas的项目。Polars基于Apache Arrow,提供高性能和延迟计算。Dask是一个灵活的并行计算库,可扩展NumPy、Pandas等,支持分布式计算。" 132958899,20037159,Unity3D UGUI Text颜色渐变教程,"['游戏开发', 'Unity', '图形渲染']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Python并行化处理之Pandarallel VS Polars VS Dask

随着数据科学和机器学习领域的快速发展,处理大规模数据集的需求日益增长。Python,作为数据科学领域的首选语言之一,提供了多种并行化方案来加速数据处理和分析任务。在众多解决方案中,Pandarallel、Dask和Polars因其强大的功能和灵活性而脱颖而出。在本文中,我们将探讨这三种并行化方案的异同,评估它们在不同场景下的表现,并提供实用的指导,以帮助您选择最适合您项目需求的工具。



前言

在Python生态系统中,Pandas是一个广泛使用的数据分析库,它提供了丰富的数据处理功能。然而,Pandas在处理非常大的数据集时可能会遇到性能瓶颈,因为它主要依赖于单线程操作。为了克服这一限制,Pandarallel应运而生,它允许Pandas操作在多个CPU核心上并行执行。与此同时,Dask提供了一个灵活的并行计算系统,它能够扩展Pandas、NumPy和其他Python库,处理比内存大得多的数据集Polars则是一个较新的库,它以零拷贝的执行和SIMD指令集优化为特点,提供了一种高性能的数据处理方式


一、Pandarallel是什么?

Pandarallel源码
Pandarallel 是一个 Python 库,本质是Pandas的一个并行化的扩展,旨在提高 pandas 库在数据处理任务中的性能,通过并行化操作来加速 DataFrame 和 Series 的运算。它是专为 pandas 设计的,能够在多核机器上有效利用 CPU 资源,从而显著提高数据处理的速度。

Pandarallel 的工作原理基于 Python 的多进程处理。由于 Python 的全局解释器锁(GIL)限制了多线程的性能,Pandarallel 使用多进程来避开这一限制。它通过创建多个进程,每个进程复制当前的数据和代码,然后并行处理各自的数据块,最后将结果合并。这样可以充分利用多核 CPU,加速数据处理任务。

  • 注意:Pandarallel 主要用于加速 pandas 数据处理操作的并行化,并不直接影响到 scikit-learn (sklearn)、TensorFlow、PyTorch等
    的模型训练过程。Pandarallel 处理后的数据可以作为输入数据代入上述框架中训练模型,但这并不会自动使模型训练过程变成并行的。

1.核心功能

  • parallel_apply: 用于 DataFrame 的行或列,替代 apply 方法。
  • parallel_applymap: 用于DataFrame,替代 applymap 方法。
  • parallel_map: 用于 Series,替代 map 方法。
  • parallel_progress_apply: 功能类似于 parallel_apply,但提供进度条显示。

2.使用方法

# pip install pandarallel
from pandarallel import pandarallel
import pandas as pd
import numpy as np

# 初始化 Pandarallel
pandarallel.initialize()

# 创建一个大型 DataFrame
df = pd.DataFrame({
   
    'a': np.random
<think>好的,用户想找类似于pandas的Python数据处理库。首先,我需要回忆一下常见的Python数据处理工具。pandas主要用于数据操作和分析,所以类似功能的库可能有不同的侧重点,比如性能优化、特定领域应用或者接口设计。 首先,用户可能已经了解pandas的基本功能,但需要其他库来补充或替代。比如,对于大数据处理Dask是一个不错的选择,因为它可以并行处理超出内存的数据集,并且与pandas的API兼容。另外,Modin也是一个优化性能的库,利用多核或分布式计算来加速pandas操作,用户可能对提升处理速度感兴趣。 然后,考虑到用户提到的类似功能,可能需要其他领域的数据处理库。例如,Polars使用Rust编写,注重高性能,特别是在处理大型数据时的速度优势。Vaex适合处理非常大的数据集,无需将数据全部加载到内存中,这对处理海量数据可能很有帮助。 接下来,用户可能对时间序列分析或金融数据处理有需求,所以可以推荐专门领域的库,比如xarray处理多维数据,适合科学计算;Geopandas处理地理空间数据;或者PySpark用于分布式处理,适合集成到大数据生态系统中。 另外,用户可能希望了解这些库的优缺点,比如语法差异、性能比较或适用场景。例如,Koalas(现在合并到PySpark中)提供了类似pandas的API,方便Spark用户迁移代码。而CuDF利用GPU加速,适合需要高性能计算的场景。 还要检查是否有遗漏的库,比如Arrow和Pandas的集成,或者新兴的库如Ibis,它提供延迟执行,优化查询计划。这些可能对用户的高级需求有帮助。 最后,需要根据用户可能的实际应用场景,比如数据预处理、分析、可视化,或者特定行业的需求,推荐相应的库。同时,注意引用之前的引用内容,但用户的问题是关于类似pandas的库,之前的引用主要涉及pandas的基本使用,可能不需要直接引用,但需要确保回答的相关性。</think>在Python生态系统中,存在多个与pandas功能相似或互补的数据处理库。以下是几个值得关注的选择: ### 一、核心替代方案 1. **Dask** - 支持并行计算,可处理超出内存限制的大型数据集 - 提供与pandas兼容的DataFrame接口 - 示例: ```python import dask.dataframe as dd df = dd.read_csv('large_dataset.csv') # 处理大型CSV文件 ``` 2. **Polars** - 基于Rust编写的高性能DataFrame库 - 比pandas更快的内存计算速度 - 语法示例: ```python import polars as pl df = pl.DataFrame({"a": [1,2,3], "b": [4,5,6]}) ``` 3. **Vaex** - 专为海量数据集设计(支持TB级) - 延迟计算和内存映射技术[^3] ```python import vaex df = vaex.open('huge_file.hdf5') ``` ### 二、领域专用方案 1. **Geopandas**(地理数据处理) - 扩展pandas支持地理空间数据 - 集成shapely进行空间运算 2. **xarray**(多维数据) - 处理带标签的多维数组 - 特别适合科学计算数据模型 3. **PySpark**(分布式处理) - 基于Spark引擎的分布式计算 - 提供类似pandas的DataFrame API ### 三、性能优化方案 | 库名称 | 优势领域 | 性能特点 | |--------|----------|----------| | CuDF | GPU加速 | 利用NVIDIA GPU加速计算 | | Modin | 并行处理 | 自动分配多核CPU资源 | | Arrow | 内存优化 | 高效内存布局和零拷贝读取 | ### 四、选择建议 1. **中小型数据集**优先考虑pandas(生态最成熟) 2. **单机大数据**尝试DaskPolars 3. **分布式环境**使用PySpark 4. **地理数据**选择Geopandas 5. **实时流处理**考虑PyFlink 这些库大多支持与pandas的互操作,例如: ```python # 将pandas DataFrame转换为Polars pl_df = pl.from_pandas(pd_df) # 将Dask DataFrame转为pandas pd_df = dask_df.compute() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值