不错的链接:ILSVRC-ImageNet历年竞赛冠军
非常不错的链接:经典的 DCNN (Deep Convolutional Neural Network)
2006 年后,随着深度学习理论的完善,随着参数微调(fine-tuning)和逐层学习技术的发展,CNN 得到急速发展,不断加深结构,引入各种学习和优化理论。之后,卷积神经网络出现的各种变体也得到了极大的应用,包括 AlexNet,ZFNet、VGGNet、GoogLeNet、 ResNet,且均在 ImageNet 大规模视觉识别竞赛(ImageNet Large Scale Visual Recognition Challenge, ILSVRC,2010-2017年)上获取优胜算法称号。
以下内容摘录自《基于卷积神经网络的文物识别系统的研究与实现_王梦婷》
(感觉2016、2017的时间和模型对应得有点错乱,但是冠军没有对应错,就先这样吧)
1989年 LeNet 雏形,Yann Lecun将反向传播应用在神经网络结构的训练中,形成LeNet雏形。
2012年 AlexNet 获得ILSVRC分类冠军,由Hinton 和他的学生Alex KrizhevskySl提出。AlexNet 利用两块GPU进行计算,大大减少了运行时间。相较于LeNet-S, AlexNet 网络深度更深,其使用了更多地卷积层和全连接层,并使用了11x11、5x5和3x3三个尺度的卷积核。在网络中使用ReLu函数作为激活函数,增强了网络非线性表现能力,并在全连接层中使用了DropOut来防止过拟合。
2013年 ZFNet 获得ILSVRC分类冠军,由Zeiler和Fergus提出。该网络在AlexNet基础上做了略微调整,整体网络结构没有太大变化。但其从科学的角度出发,通过可视化技术解释网络各层是如何工作的,根据对AlexNet网络进行可视化发现,如果将AlexNet的第一个卷积层将步长设置为2,卷积核尺寸为7x7,网络能提取到更有效的特征。
2014年:
- GooLeNet 获得ILSVRC分类冠军,由谷歌研究的深度卷积网络。GooLeNet不仅加深了网络深度,还拓宽了网络宽度,其网络深度有22层,但是参数量仅为AlexNet的十二分之一, 他们提出了Inception网络结构,Inception 有多个版本,不断趋于完善。
- VGGNet 获得ILSVRC分类亚军,是牛津大学计算机视觉组合和Google DeepMind公司研究员一起设计的卷积网络。VGGNet结构与LeNet-5和AlexNet结构类似,但其加深了网络深度,通过小卷积堆叠的方式构建整个网络。VGGNet使用 2个3 x3卷积核代替5x5卷积核,3个 3 x 3卷积核代替7x 7卷积核,他们的感受野是一样的,但使用3 x 3卷积核增加了非线性次数使网络表达能力更强,同时还减少了参数量。虽然已经通过3x3卷积核减少了参数量,但网络最后的全连接层的使用还是使VGGNet参数总量为AlexNet的三倍之多。VGGNet证明了更深层的网络有更好的表现能力,有很大的研究价值。
2015年 ResNet 获得ILSVRC分类冠军,由何凯明团队提出。ResNet(深度残差网络)引入了残差块结构防止梯度消失,是的训练成百上千层网络成为可能。ResNet的出现是CNN的一个里程碑事件,在这之后涌现了大量基于ResNet的改进模型。
2016年:
- Trimps-Soushen 冠军
- ResNext 亚军 是Inception结构与ResNet的结合,与Inception-v4不同,其每个分支结构相同。
- Inception-ResNet 网络,Szegedy将 Inception 结构与ResNet 的残差结构相结合提出Inception-ResNet网络,它有v1和v2两个版本,对应Inception-v3 和Inception-v4。
- 何凯明提出了改进的残差网络结构。
2017年:
- SENet 冠军 ,由Momenta团队提出,SENet的核心是SE模块。先对原始特征图进行压缩(squeeze)操作,将维度为HxWxC的特征图压缩为1 x1xC,也就是这一维参数获得了全局特征。然后对得到的每个通道的重要性后激励(excitation) 到原始特征图的对应通道上。
- DenseNet 模型将前面所有层与后面层进行紧密连接,并实现了特征重用。与ResNet相比,DenseNet 参数量和计算成本更少,但性能更好。
- ResNext 模型是Inception结构与ResNet的结合,与Inception-v4不同,其每个分支结构相同。
- Xception 是对 Inception-v3 的一种改进,其对1x1卷积后的每个通道分别进行3x3卷积操作。
- 轻量级
- 谷歌提出了应用于移动端或嵌入式设备中的轻量级CNN网络MobileNet,提出了深度可分离卷积。
- Face++提出的一种轻量化网络结构ShuffleNet,其核心是使用分组卷积和Channelshuffle。