求解线性最小二乘系统

一个超定方程组,比如Ax = b,没有解。 在这种情况下,在差值Ax-b尽可能小的意义上,搜索最接近解的向量x是有意义的。 这个x被称为最小二乘解(如果使用欧几里德范数)。本页讨论的三种方法是SVD分解,QR分解和正规方程。 其中,SVD分解通常是最准确的,但最慢的正规方程是最快但最不准确的,并且QR分解介于两者之间。

使用SVD分解

BDCSVD类中的solve()方法可以直接用于求解线性方块系统。 仅计算奇异值(此类的默认值)是不够的; 你还需要奇异向量,但薄SVD分解足以计算最小二乘解:

#include <iostream>
#include <Eigen/Dense>
using namespace std;
using namespace Eigen;
int main()
{
   MatrixXf A = MatrixXf::Random(3, 2);
   cout << "Here is the matrix A:\n" << A << endl;
   VectorXf b = VectorXf::Random(3);
   cout << "Here is the right hand side b:\n" << b << endl;
   cout << "The least-squares solution is:\n"
        << A.bdcSvd(ComputeThinU | ComputeThinV).solve(b) << endl;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值