【4.7 高斯消元详解】

更好的阅读体验 \color{red}{更好的阅读体验} 更好的阅读体验

4.7 高斯消元


概念

  • 利用初等行(列)变换,对一组线性方程组进行消元,把增广矩阵化为阶梯型矩阵

  • 已知某线 性方程组: { a 11 x 1 + a 12 x 2 + ⋯ + a 1 n x n = b 1 a 21 x 1 + a 22 x 2 + ⋯ + a 2 n x n = b 2 … a n 1 x 1 + a n 2 x 2 + ⋯ + a n n x n = b n 增广矩阵 为: ( a 11 a 12 … a 1 n b 1 a 21 a 22 … a 2 n b 2 ⋮ ⋮ ⋮ ⋮ ⋮ a n 1 a n 2 … a n n b n ) 运用初等 行变换: ( a 11 a 12 … a 1 n b 1 a 22 a 2 ( i + 1 ) a 2 n b 2 ⋮ ⋮ a n n b n ) 解的情况 { 1. 无解 : 若在最后化成的上三角形矩阵中 , 正对角线中某个元素为 0 , 但其所在行的最后一列元素不为 0 时 , 此时矩阵无解 2. 有无数解 : 若在最后化成的上三角形矩阵中 , 存在正对角线中某个元素为 0 , 且其所在行的最后一列元素也为 0 时 , 此时矩阵有无穷组解 3. 有唯一解 : 若在最后化成的上三角形矩阵中 , 不存在正对角线中某个元素为 0 , 此时矩阵有唯一解 \begin{aligned} 已知某线&性方程组:\\\\ &\begin{cases} a_{11}x_1+a_{12}x_2+\dots+a_{1n}x_n=b_1\\ a_{21}x_1+a_{22}x_2+\dots+a_{2n}x_n=b_2\\ \dots\\ a_{n1}x_1+a_{n2}x_2+\dots+a_{nn}x_n=b_n\\ \end{cases}\\\\ 增广矩阵&为:\\\\ &\begin{pmatrix} a_{11}&a_{12}&\dots&a_{1n}&b_1\\ a_{21}&a_{22}&\dots&a_{2n}&b_2\\ \vdots&\vdots&\vdots&\vdots&\vdots\\ a_{n1}&a_{n2}&\dots&a_{nn}&b_n\\ \end{pmatrix}\\\\ 运用初等&行变换:\\\\ &\begin{pmatrix} a_{11}&a_{12}&\dots&a_{1n}&b_1\\ &a_{22}&a_{2(i+1)}&a_{2n}&b_2\\ &&&\vdots&\vdots\\ &&&a_{nn}&b_n\\ \end{pmatrix}\\\\ \end{aligned}\\ 解的情况 \begin{cases} 1.无解:若在最后化成的上三角形矩阵中,\\正对角线中某个元素为0,\\但其所在行的最后一列元素不为0时,\\此时矩阵无解\\\\2.有无数解:若在最后化成的上三角形矩阵中,\\存在正对角线中某个元素为0,\\且其所在行的最后一列元素也为0时,\\此时矩阵有无穷组解 \\\\ 3.有唯一解:若在最后化成的上三角形矩阵中,\\不存在正对角线中某个元素为0,\\此时矩阵有唯一解\\ \end{cases} 已知某线增广矩阵运用初等性方程组: a11x1+a12x2++a1nxn=b1a21x1+a22x2++a2nxn=b2an1x1+an2x2++annxn=bn为: a11a21an1a12a22an2a1na2nannb1b2bn 行变换: a11a12a22a2(i+1)a1na2nannb1b2bn 解的情况 1.无解:若在最后化成的上三角形矩阵中,正对角线中某个元素为0,但其所在行的最后一列元素不为0,此时矩阵无解2.有无数解:若在最后化成的上三角形矩阵中,存在正对角线中某个元素为0,且其所在行的最后一列元素也为0,此时矩阵有无穷组解3.有唯一解:若在最后化成的上三角形矩阵中,不存在正对角线中某个元素为0,此时矩阵有唯一解

初等行(列)变换

  • 某一行乘上一个非零数,矩阵不变

  • 某一行乘上一个常数加到另一行上,矩阵不变

  • 交换矩阵中某两行的元素,矩阵不变

思想

  • 对增广矩阵的每一列 c i c_i ci进行枚举,找到当前的列中绝对值最大的元素所在的行 r i r_i ri

  • r i r_i ri行与最上方未确定阶梯型的行进行交换

  • 用初等行变换将 r i r_i ri行变为原来的 k k k倍,且使得变换后, r i r_i ri行的第一个数变成 1 1 1

  • 继续用初等行变换,将 r i r_i ri行下方的所有的行的 c i c_i ci列的值变为 0 0 0

  • 重复上述步骤,直到最终得到阶梯型矩阵,判断解的情况

  • 若有解,则从最后一行向上回代,得出方程组的解

模板

const int N=110;

const double eps=1e-8;

int n;

double a[N][N];

int gauss(){
    
    int c,r;
    
    for (c=0,r=0;c<n;c++){
        
        int t=r;
        
        for(int i=r;i<n;i++){  //筛选出所在列元素最大的行
            if(fabs(a[i][c])>fabs(a[t][c])) t=i;
        }

        if(fabs(a[t][c])<eps) continue;  //正对角线中有元素为0,这时有无穷解和无解

        if(t!=r) for(int i=c;i<=n;i++) swap(a[t][i],a[r][i]);  //若t改变,则交换两行
        
        for(int i=n;i>=c;i--) a[r][i]/=a[r][c];  //将所在行所在列元素变为1
                
        for(int i=r+1;i<n;i++){  //将所在行所在列的下方的行的所在列元素变为0
            if(fabs(a[i][c])>eps){
                for(int j=n;j>=c;j--) a[i][j]-=a[r][j]*a[i][c];
            }
        }
        
        r++;
        
    }

    if(r<n){  //row<n,即对角线中元素为0的行未被算上
        for(int i=r;i<n;i++){
            if(fabs(a[i][n])>eps) return 2;
        }
        return 1;
    }
    
    for(int i=n-1;i>=0;i--){  //将非主元位置的A系数矩阵的其他x消去
        for(int j=i+1;j<n;j++) a[i][n]-=a[j][n]*a[i][j];
    }
    
    return 0;
    
}

4.7.1 高斯消元解线性方程组


模板例题 883. 高斯消元解线性方程组

原题链接

描述

输入一个包含 n 个方程 n 个未知数的线性方程组。

方程组中的系数为实数。

求解这个方程组。

下图为一个包含 m 个方程 n 个未知数的线性方程组示例:

{ a 11 x 1 + a 12 x 2 + ⋯ + a 1 n x n = b 1 a 21 x 1 + a 22 x 2 + ⋯ + a 2 n x n = b 2 … a m 1 x 1 + a m 2 x 2 + ⋯ + a m n x n = b n \begin{cases} a_{11}x_1+a_{12}x_2+\dots+a_{1n}x_n=b_1\\ a_{21}x_1+a_{22}x_2+\dots+a_{2n}x_n=b_2\\ \dots\\ a_{m1}x_1+a_{m2}x_2+\dots+a_{mn}x_n=b_n\\ \end{cases}\\\\ a11x1+a12x2++a1nxn=b1a21x1+a22x2++a2nxn=b2am1x1+am2x2++amnxn=bn
输入格式
第一行包含整数 n。

接下来 n 行,每行包含 n+1 个实数,表示一个方程的 n 个系数以及等号右侧的常数。

输出格式
如果给定线性方程组存在唯一解,则输出共 n 行,其中第 i 行输出第 i 个未知数的解,结果保留两位小数。

如果给定线性方程组存在无数解,则输出 Infinite group solutions

如果给定线性方程组无解,则输出 No solution

数据范围
1≤n≤100,
所有输入系数以及常数均保留两位小数,绝对值均不超过 100。

输入样例:

3
1.00 2.00 -1.00 -6.00
2.00 1.00 -3.00 -9.00
-1.00 -1.00 2.00 7.00

输出样例:

1.00
-2.00
3.00

分析
由样例可 得增广矩阵: ( 1 2 − 1 − 6 2 1 − 3 − 9 − 1 − 1 2 7 ) c 1 中绝对 值最大元素位于 r 2 ,将 r 2 与 r 1 交换: ( 2 1 − 3 − 9 1 2 − 1 − 6 − 1 − 1 2 7 ) 将 r 1 的第 c 1 列元素变为 1 ,需要使得 r 1 × 1 2 : ( 1 0.5 − 1.5 − 4.5 1 2 − 1 − 6 − 1 − 1 2 7 ) 利用初等 行变换将 r 1 下方的所有的行的 c 1 列变为 0 : 即执行 r 2 − r 1 、 r 3 + r 1 ( 1 0.5 − 1.5 − 4.5 0 1.5 0.5 − 1.5 0 − 0.5 0.5 2.5 ) 此时 r 1 已 确定为阶梯矩阵的行,从 r 1 下方继续枚举 , c 2 中绝对 值最大的元素位于 r 2 ,由于 r 2 上方无未确 定的阶梯 矩阵的行,故不需要交换。 将 r 2 的第 c 2 列元素变为 1 ,需要使得 r 2 × 2 3 : ( 1 0.5 − 1.5 − 4.5 0 1 1 3 − 1 0 − 0.5 0.5 2.5 ) 利用初等 行变换将 r 2 下方的所有的行的 c 2 列变为 0 : 即执行 r 3 + r 2 × 1 2 ( 1 0.5 − 1.5 − 4.5 0 1 1 3 − 1 0 0 2 3 2 ) 此时 r 2 已 确定为阶梯矩阵的行,从 r 2 下方继续枚举 , r 3 为最后 一行,将 r 3 的第 c 3 列元素变为 1 ,需要使得 r 3 × 3 2 : ( 1 0.5 − 1.5 − 4.5 0 1 1 3 − 1 0 0 1 3 ) 判断该上 三角矩阵中不存在正对角线中某个元素为 0 , 此时 矩阵有唯 一解, x 3 = 3 , 从 r 2 进行回代 : 即执行 r 2 − r 3 × 1 3 ( 1 0.5 − 1.5 − 4.5 0 1 0 − 2 0 0 1 3 ) 此时可得 x 2 = − 2 , 回代 r 1 : 即执行 r 1 − r 2 × 1 2 + r 3 × 3 2 ( 1 0 0 1 0 1 0 − 2 0 0 1 3 ) 此时可得 x 1 = 1 , 综上可得 : { x 1 = 1 x 2 = − 2 x 3 = 3 \begin{aligned} 由样例可&得增广矩阵:\\\\ &\begin{pmatrix} 1&2&-1&-6\\ 2&1&-3&-9\\ -1&-1&2&7\\ \end{pmatrix}\\\\c_1中绝对&值最大元素位于r_2,将r_2与r_1交换:\\\\ &\begin{pmatrix} 2&1&-3&-9\\ 1&2&-1&-6\\ -1&-1&2&7\\ \end{pmatrix}\\\\ 将r_1的第&c_1列元素变为1,需要使得r_1\times \frac{1}{2}:\\\\ &\begin{pmatrix} 1&0.5&-1.5&-4.5\\ 1&2&-1&-6\\ -1&-1&2&7\\ \end{pmatrix}\\\\ 利用初等&行变换将r_1下方的所有的行的c_1列变为0:\\ &即执行r_2-r_1、r_3+r_1\\\\ &\begin{pmatrix} 1&0.5&-1.5&-4.5\\ 0&1.5&0.5&-1.5\\ 0&-0.5&0.5&2.5\\ \end{pmatrix}\\\\ 此时r_1已&确定为阶梯矩阵的行,从r_1下方继续枚举,\\ c_2中绝对&值最大的元素位于r_2,由于r_2上方无未确\\ 定的阶梯&矩阵的行,故不需要交换。\\ 将r_2的第&c_2列元素变为1,需要使得r_2\times \frac{2}{3}:\\\\ &\begin{pmatrix} 1&0.5&-1.5&-4.5\\ 0&1&\frac{1}{3}&-1\\ 0&-0.5&0.5&2.5\\ \end{pmatrix}\\\\ 利用初等&行变换将r_2下方的所有的行的c_2列变为0:\\ &即执行r_3+r_2\times\frac{1}{2}\\\\ &\begin{pmatrix} 1&0.5&-1.5&-4.5\\ 0&1&\frac{1}{3}&-1\\ 0&0&\frac{2}{3}&2\\ \end{pmatrix}\\\\ 此时r_2已&确定为阶梯矩阵的行,从r_2下方继续枚举,\\ r_3为最后&一行,将r_3的第c_3列元素变为1,需要使得r_3\times \frac{3}{2}:\\\\ &\begin{pmatrix} 1&0.5&-1.5&-4.5\\ 0&1&\frac{1}{3}&-1\\ 0&0&1&3\\ \end{pmatrix}\\\\ 判断该上&三角矩阵中不存在正对角线中某个元素为0,此时\\ 矩阵有唯&一解,x_3=3,从r_2进行回代:\\ &即执行r_2-r_3\times\frac{1}{3}\\\\ &\begin{pmatrix} 1&0.5&-1.5&-4.5\\ 0&1&0&-2\\ 0&0&1&3\\ \end{pmatrix}\\\\ 此时可得&x_2=-2,回代r_1:\\ &即执行r_1-r_2\times\frac{1}{2}+r_3\times\frac{3}{2}\\\\ &\begin{pmatrix} 1&0&0&1\\ 0&1&0&-2\\ 0&0&1&3\\ \end{pmatrix}\\\\ 此时可得&x_1=1,综上可得: \begin{cases} x_1=1\\x_2=-2\\x_3=3 \end{cases} \end{aligned} 由样例可c1中绝对r1的第利用初等此时r1c2中绝对定的阶梯r2的第利用初等此时r2r3为最后判断该上矩阵有唯此时可得此时可得得增广矩阵: 121211132697 值最大元素位于r2,将r2r1交换: 211121312967 c1列元素变为1,需要使得r1×21: 1110.5211.5124.567 行变换将r1下方的所有的行的c1列变为0:即执行r2r1r3+r1 1000.51.50.51.50.50.54.51.52.5 确定为阶梯矩阵的行,从r1下方继续枚举,值最大的元素位于r2,由于r2上方无未确矩阵的行,故不需要交换。c2列元素变为1,需要使得r2×32: 1000.510.51.5310.54.512.5 行变换将r2下方的所有的行的c2列变为0:即执行r3+r2×21 1000.5101.531324.512 确定为阶梯矩阵的行,从r2下方继续枚举,一行,将r3的第c3列元素变为1,需要使得r3×23: 1000.5101.53114.513 三角矩阵中不存在正对角线中某个元素为0,此时一解,x3=3,r2进行回代:即执行r2r3×31 1000.5101.5014.523 x2=2,回代r1:即执行r1r2×21+r3×23 100010001123 x1=1,综上可得: x1=1x2=2x3=3

代码

#include <bits/stdc++.h>
using namespace std;

const int N=110;

const double eps=1e-8;

int n;

double a[N][N];

int gauss(){
    
    int c,r;
    
    for (c=0,r=0;c<n;c++){
        
        int t=r;
        
        for(int i=r;i<n;i++){  //筛选出所在列元素最大的行
            if(fabs(a[i][c])>fabs(a[t][c])) t=i;
        }

        if(fabs(a[t][c])<eps) continue;  //正对角线中有元素为0,这时有无穷解和无解

        if(t!=r) for(int i=c;i<=n;i++) swap(a[t][i],a[r][i]);  //若t改变,则交换两行
        
        for(int i=n;i>=c;i--) a[r][i]/=a[r][c];  //将所在行所在列元素变为1
                
        for(int i=r+1;i<n;i++){  //将所在行所在列的下方的行的所在列元素变为0
            if(fabs(a[i][c])>eps){
                for(int j=n;j>=c;j--) a[i][j]-=a[r][j]*a[i][c];
            }
        }
        
        r++;
        
    }

    if(r<n){  //row<n,即对角线中元素为0的行未被算上
        for(int i=r;i<n;i++){
            if(fabs(a[i][n])>eps) return 2;
        }
        return 1;
    }
    
    for(int i=n-1;i>=0;i--){  //将非主元位置的A系数矩阵的其他x消去
        for(int j=i+1;j<n;j++) a[i][n]-=a[j][n]*a[i][j];
    }
    
    return 0;
    
}


int main(){
    
    cin>>n;
    
    for(int i=0;i<n;i++){
        for(int j=0;j<=n;j++){
            cin>>a[i][j];
        }
    }
    
    int t=gauss();
    
    if(t==2){
        cout<<"No solution"<<endl;
    }
    else if(t==1) cout<<"Infinite group solutions"<<endl;
    else{
        for(int i=0;i<n;i++){
            if(fabs(a[i][n])<eps) a[i][n]=0;
            printf("%.2lf\n",a[i][n]);
        }
    }
    
    return 0;
    
}

4.7.2 高斯消元解异或线性方程组


思想

  • 将解线性方程组的计算化为异或运算

模板例题 884. 高斯消元解异或线性方程组

原题链接

描述

输入一个包含 n 个方程 n 个未知数的异或线性方程组。

方程组中的系数和常数为 0 或 1,每个未知数的取值也为 0 或 1。

求解这个方程组。

异或线性方程组示例如下:

M[1][1]x[1] ^ M[1][2]x[2] ^ … ^ M[1][n]x[n] = B[1]
M[2][1]x[1] ^ M[2][2]x[2] ^ … ^ M[2][n]x[n] = B[2]

M[n][1]x[1] ^ M[n][2]x[2] ^ … ^ M[n][n]x[n] = B[n]
其中 ^ 表示异或(XOR),M[i][j] 表示第 i 个式子中 x[j] 的系数,B[i] 是第 i 个方程右端的常数,取值均为 0 或 1。

输入格式
第一行包含整数 n。

接下来 n 行,每行包含 n+1 个整数 0 或 1,表示一个方程的 n 个系数以及等号右侧的常数。

输出格式
如果给定线性方程组存在唯一解,则输出共 n 行,其中第 i 行输出第 i 个未知数的解。

如果给定线性方程组存在多组解,则输出 Multiple sets of solutions。

如果给定线性方程组无解,则输出 No solution。

数据范围
1≤n≤100
输入样例:

3
1 1 0 1
0 1 1 0
1 0 0 1

输出样例:

1
0
0

代码

#include <bits/stdc++.h>
using namespace std;

const int N=110;

int n;

int a[N][N];

int guass(){
    
    int c,r;
    
    for (c=0,r=0;c<n;c++){
        
        int t=r;
        
        for (int i=r;i<n;i++){
            if (a[i][c]) t = i;
        }

        if(!a[t][c]) continue;

        for (int i=c;i<=n;i++) swap(a[r][i],a[t][i]);
        
        for (int i=r+1;i<n;i++){
            if (a[i][c]){
                for (int j=n;j>=c;j--) a[i][j]^=a[r][j];
            }
        }

        r++;
        
    }
    
    if(r<n){
        
        for(int i=r;i<n;i++){
            if(a[i][n]) return 2;
        }
        
        return 1;
        
    }
    
    for(int i=n-1;i>=0;i--){
        for(int j=i+1;j<n;j++){
            a[i][n]^=a[i][j]*a[j][n];
        }
    }
    
    return 0;
    
}

int main(){
    
    cin>>n;
    
    for(int i=0;i<n;i++){
        for(int j=0;j<n+1;j++){
            cin>>a[i][j];
        }
    }
    
    int t=guass();
    
    if(t==0){
        
        for(int i=0;i<n;i++) cout<<a[i][n]<<endl;
        
    }
    else if(t==1) cout<<"Multiple sets of solutions"<<endl;
    else cout<<"No solution"<<endl;
    
    return 0;
    
}

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

浪漫主义狗

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值