分析各渠道广告,建立评分模型以及找到优质渠道的特性

本文通过分析多个广告渠道的效果数据,采用加权评分法评估渠道质量,发现平均停留时间和访问深度相关性高,需考虑合并或删除其中一个。优质渠道主要特征包括:素材类型为jpg、广告类型为横幅、合作方式中ROI占比增加。A859和A756渠道表现优秀,适合增加投放。同时,广告类型为“不确定”的情况需明确,gif、暂停类型的广告与访问深度相关性强。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

官方描述

公司近三个月(30天)大力投放广告,累计投放的渠道有889,每个渠道的客户性质也可能不同,比如在优酷视频投广告和今日头条投放广告,效果可能会有差异。现在需要对广告效果分析实现有针对性的广告效果测量和优化工作。


一、观察数据

在这里插入图片描述
在这里插入图片描述
平均停留时长有两个空值,我们找到这两个空值
在这里插入图片描述
两个渠道都有日均UV,平均停留时间不太可能为0。并且两个渠道的素材类型、广告类型、合作方式、广告卖点相同,用相同广告属性的平均数去弥补。

同时我们能根据平均数、四分位数推测,结果数据呈现偏态分布,有许多异常值,做直方图和箱线图查看。

在这里插入图片描述
实现代码:

fig, axes = plt.subplots(2,6,figsize=(20,8))
result_type=ad.columns.tolist()[1:7]
result_type
for i in range(len(result_type)):
    sns.distplot(ad[result_type[i]],norm_hist=True,ax=axes[0][i])
    axes[0][i].axvline(x=ad[result_type[i]].mean(), color = 'red',linestyle=":")
    sns.boxplot(ad[result_type[i]],ax=axes[1][i])
plt.tight_layout()

在这里插入图片描述


二、提出问题以及实现方法

2.1 哪个渠道综合结果数据较优质

重点关注顺序应该是渠道给公司带来的:
收益效果(订单转化率)
新用户效果(平均注册率)
访问效果(日均UV、平均搜索率、访问深度、平均停留时长)

这里用加权评分法对这几个结果数据进行评分

2.1.1 排除有相关性的数据

corr = ad.corr().round(2)
mask = np.zeros_like(corr)
mask[np
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值