文章目录
官方描述
公司近三个月(30天)大力投放广告,累计投放的渠道有889,每个渠道的客户性质也可能不同,比如在优酷视频投广告和今日头条投放广告,效果可能会有差异。现在需要对广告效果分析实现有针对性的广告效果测量和优化工作。
一、观察数据
平均停留时长有两个空值,我们找到这两个空值
两个渠道都有日均UV,平均停留时间不太可能为0。并且两个渠道的素材类型、广告类型、合作方式、广告卖点相同,用相同广告属性的平均数去弥补。
同时我们能根据平均数、四分位数推测,结果数据呈现偏态分布,有许多异常值,做直方图和箱线图查看。
实现代码:
fig, axes = plt.subplots(2,6,figsize=(20,8))
result_type=ad.columns.tolist()[1:7]
result_type
for i in range(len(result_type)):
sns.distplot(ad[result_type[i]],norm_hist=True,ax=axes[0][i])
axes[0][i].axvline(x=ad[result_type[i]].mean(), color = 'red',linestyle=":")
sns.boxplot(ad[result_type[i]],ax=axes[1][i])
plt.tight_layout()
二、提出问题以及实现方法
2.1 哪个渠道综合结果数据较优质
重点关注顺序应该是渠道给公司带来的:
收益效果(订单转化率)
新用户效果(平均注册率)
访问效果(日均UV、平均搜索率、访问深度、平均停留时长)
这里用加权评分法对这几个结果数据进行评分
2.1.1 排除有相关性的数据
corr = ad.corr().round(2)
mask = np.zeros_like(corr)
mask[np