pandas_数据选择

本文详细介绍了pandas库中如何选择数据,包括选择列、行选择以及行列同时选择的方法。内容涵盖普通索引、位置索引、布尔索引、切片索引等多种选择方式,并通过实例演示了loc、iloc和ix方法的应用。
摘要由CSDN通过智能技术生成

pandas 数据选择

1. 选择列

1.1.1 普通索引

只需要在表df后面的方括号中指明要选择的列名即可。如果是一列,则只需要传入一个列名;如果是同时选择多列,则传入多个列名即可,多个列名用一个list存起来。

# 普通索引(列)
print(df["列名称"])
print(df[["列名称1", "列名称2"]])

1.1.2 位置索引

把这种通过传入具体位置来选择数据的方式称为位置索引。

iloc 后的方括号中逗号之前的部分表示要获取的行的位置,只输入一个冒号,不输入任何数值表示获取所有的行; 逗号之后的方括号表示要获取的列的位置,列的位置同样是也是从0开始计数。

# 位置索引(列)
print(df.iloc[:, [0, 2]])  
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值