RANSAC算法实现 + 直线拟合

一、RANSAC算法

1.参考资料

[1]题目来源与解析:商汤科技SLAM算法岗的RANSAC编程题

[2]牛客网题目:[编程题]线性回归

[3]牛客网解答参考:商汤科技某算法岗的编程题有点过分了啊

[4]RANSAC算法原理:RANSAC翻译、经典RANSAC以及其相关的改进的算法小结

[5]参考代码(只进行两点的估计):RANSAC 直线拟合算法

[6]最小二乘拟合直线原理:最小二乘法直线拟合:Ax+By+C=0

[7]最小二乘拟合直线代码:Ax+By+C=0 直线一般式拟合 c++/python

[8]最小二乘原理推导:最小二乘法求回归直线方程的推导过程

 

2.题目要求

拟合二维平面中的带噪音直线, 
其中有不超过10%的样本点远离了直线,另外90%的样本点可能有高斯噪声的偏移
要求输出为 
ax+by+c=0的形式 
其中a > 0 且 a^2 + b^2 = 1

输入描述:
第一个数n表示有多少个样本点  之后n*2个数 每次是每个点的x 和y

输出描述:
输出a,b,c三个数,至多可以到6位有效数字

示例1
输入
5
3 4
6 8
9 12
15 20
10 -10

输出
-0.800000 0.600000 0.000000
说明
本题共有10个测试点,每个点会根据选手输出的参数计算非噪音数据点的拟合误差E,并根据E来对每个数据点进行评分0-10分
输入数据的范围在-10000

3.RANSAC算法伪代码(转自[4])

伪码形式的算法如下所示: 
输入: 
data —— 一组观测数据 
model —— 适应于数据的模型 
n —— 适用于模型的最少数据个数 
k —— 算法的迭代次数 
t —— 用于决定数据是否适应于模型的阀值 
d —— 判定模型是否适用于数据集的数据数目 
输出: 
best_model —— 跟数据最匹配的模型参数(如果没有找到好的模型,返回null) 
best_consensus_set —— 估计出模型的数据点 
best_error —— 跟数据相关的估计出的模型错误

iterations = 0
best_model = null
best_consensus_set = null
best_error = 无穷大
while ( iterations < k )
    maybe_inliers = 从数据集中随机选择n个点
    maybe_model = 适合于maybe_inliers的模型参数
    consensus_set = maybe_inliers

    for ( 每个数据集中不属于maybe_inliers的点 )
        if ( 如果点适合于maybe_model,且错误小于t )
            将点添加到consensus_set
    if ( consensus_set中的元素数目大于d )
        已经找到了好的模型,现在测试该模型到底有多好
        better_model = 适合于consensus_set中所有点的模型参数
        this_error = better_model究竟如何适合这些点的度量
        if ( this_error < best_error )
            我们发现了比以前好的模型,保存该模型直到更好的模型出现
            best_model =  better_model
            best_consensus_set = consensus_set
            best_error =  this_error
    增加迭代次数
返回 best_model, best_consensus_set, best_error

3.最小二乘求解直线

公共内容:

变量名计算公式
mX\overline{x}=\frac{1}{n}\sum\limits_{i=1}^{n}x_i
mY\overline{y}=\frac{1}{n}\sum\limits_{i=1}^{n}y_i
sXX\sum\limits_{i=1}^{n}(x_i-\overline{x})^2
sXY\sum\limits_{i=1}^{n}(x_i-\overline{x})(y_i-\overline{y})
sYY\sum\limits_{i=1}^{n}(y_i-\overline{y})^2

解法1:

参考资料[6]

解法2:

拟合直线 :

y=a+bx

最小化点到直线的平方和:

f=\sum\limits_{i=1}^{n}(y-a-bx)^2

函数f对参数a求导,并令其为0

\frac{\partial{f}}{\partial{a}}=-2\sum\limits_{i=1}^{n}(y_i-a-bx_i)=0

求得

\hat{a}=\overline{y}-b\overline{x}

将上式带入f,对参数b求导,并令其为0,有

\frac{\partial{f}}{\partial{b}}=-2\sum\limits_{i=1}^{n}((x_i-\overline{x})(y_i-\overline{y})-b(x_i-\overline{x})^2))=0

b = \frac{\sum\limits_{i=1}^{n}(x_i-\overline{x})(y_i-\overline{y})}{\sum\limits_{i=1}^{n}(x_i-\overline{x})^2}

或者f对参数b求导后,将\hat{a}=\overline{y}-b\overline{x}带入方程有

\frac{\partial{f}}{\partial{b}}=-2(\sum\limits_{i=1}^{n}x_iy_i-b\sum\limits_{i=1}^{n}x_i^2-n\mathop{\overline{x}\mathop{\overline{y}}}+nb\overline{x}^2)=0

b=\frac{\sum\limits_{i=1}^{n}x_iy_i-n\mathop{\overline{x}\mathop{\overline{y}}}}{\sum\limits_{i=1}^{n}x_i^2-n\overline{x}^2}

本文采用第一种形式

注意,采用同样的参数

    int k = 50;                //最大迭代次数
    int n = 2;                //适用于模型的最少数据个数
    double t = 0.01;        //用于决定数据是否适应于模型的阀值
    int d = data_size*0.5;    //判定模型是否适用于数据集的数据数目

解法1的通过率为100%

解法2的通过率为77.78%

暂时不明白为什么……

解法3:

根据参考资料[6],转换为二次型求最小值问题

第一种方法使用特征值分解,选取最小特征值对应的特征向量

第二种方法在二次型中,使用sin\alpha,cos\alpha替换待求量,求解参数方程

后续有时间的话会补上程序


4.算法实现

可以通过自定义模型,将该代码移植到其他程序中

/*************************************************
Author:	Sayheyheyhey

Date:2019-7-4

Description:根据伪代码实现通用的RANSAC模板
	    自定义线性模型,实现两种方式的直线拟合
**************************************************/

#include <random>
#include <iostream>
#include <time.h>
#include <set>
#include <cassert>
#include <limits.h>

using namespace std;
//数据点类型
struct st_point{
	st_point(){};
	st_point(double X, double Y) :x(X), y(Y){};
	double x;
	double y;
};
/**
  * @brief 线性模型
  *
  * Ax+By+C = 0;
*/
class linearModel{
public:
	//待估计参数
	double A, B, C;
public:
	linearModel(){};
	~linearModel(){};
	
	//使用两个点对直线进行初始估计
	void Update(vector<st_point> &data, set<int> &maybe_inliers){
		assert(maybe_inliers.size() == 2);		//初始化的点不为2个,报错
		//根据索引读取数据
		vector<int> points(maybe_inliers.begin(), maybe_inliers.end());
		st_point pts1 = data[points[0]];
		st_point pts2 = data[points[1]];
		//根据两个点计算直线参数(得到其中一组解,可以任意比例缩放)
		double delta_x = pts2.x - pts1.x;
		double delta_y = pts2.y - pts1.y;
		A = delta_y;
		B = -delta_x;
		C = -delta_y*pts2.x + delta_x*pts2.y;
	}

	//返回点到直线的距离
	double computeError(st_point point){
		double numerator = abs(A*point.x + B*point.y + C);
		double denominator = sqrt(A*A + B*B);
		return numerator / denominator;
	}

	//根据一致点的集合对直线进行重新估计
	double Estimate(vector<st_point> &data, set<int> &consensus_set){
		assert(consensus_set.size() >= 2);
		//求均值 means
		double mX, mY;
		mX = mY = 0;
		for (auto &index : consensus_set){
			mX += data[index].x;
			mY += data[index].y;
		}
		mX /= consensus_set.size();
		mY /= consensus_set.size();
		
		//求二次项的和 sum
		double sXX, sYY, sXY;
		sXX = sYY = sXY = 0;
		for (auto &index : consensus_set){
			st_point point;
			point = data[index];
			sXX += (point.x - mX)*(point.x - mX);
			sYY += (point.y - mY)*(point.y - mY);
			sXY += (point.x - mX)*(point.y - mY);
		}
		/*
		//解法1:求y=kx+b的最小二乘估计,然后再转换成一般形式
		//参考 https://blog.csdn.net/hookie1990/article/details/91406309
		bool isVertical = sXY == 0 && sXX < sYY;
		bool isHorizontal = sXY == 0 && sXX > sYY;
		bool isIndeterminate = sXY == 0 && sXX == sYY;
		double k = NAN;
		double b = NAN;

		if (isVertical)
		{
			A = 1;
			B = 0;
			C = mX;
		}
		else if (isHorizontal)
		{
			A = 0;
			B = 1;
			C = mY;
		}
		else if (isIndeterminate)
		{
			A = NAN;
			B = NAN;
			C = NAN;
		}
		else
		{
			k = (sYY - sXX + sqrt((sYY - sXX) * (sYY - sXX) + 4.0 * sXY * sXY)) / (2.0 * sXY);	//斜率
			b = mY - k * mX;															//截距
			//正则化项,使得A^2+B^2 = 1;
			double normFactor = 1 / sqrt(1 + k*k);
			A = normFactor * k;
			B = -normFactor;
			C = normFactor*b;
		}
		//返回残差
		if (isIndeterminate){
			return NAN;
		}
		double error = A*A*sXX + 2 * A*B*sXY + B*B*sYY;
                error /= consensus_set.size();
                return error;
		*/
		//解法2:
                if(sXX == 0){
                    A = 1;    
                    B = 0;
                    C = -mX;
                }
                else{
                    A = sXY/sXX;
                    B = -1;
                    C = mY - A*mX;
                    //归一化令A^2+B^2 = 1;
                    double normFactor = sqrt(A*A+B*B);
                    A /= normFactor;
                    B /= normFactor;
                    C /= normFactor;
                }
		double error = A*A*sXX + 2 * A*B*sXY + B*B*sYY;
                error /= consensus_set.size();    //求平均误差
		return error;
		
	}
};


/**
* @brief 运行RANSAC算法
*
* @param[in]	data	一组观测数据
* @param[in]	n		适用于模型的最少数据个数
* @param[in]	k		算法的迭代次数
* @param[in]	t		用于决定数据是否适应于模型的阀值
* @param[in]	d		判定模型是否适用于数据集的数据数目 
* @param[in&out]	model	自定义的待估计模型,为该函数提供Update、computeError和Estimate三个成员函数
*							运行结束后,模型参数被设置为最佳的估计值
* @param[out]	best_consensus_set	输出一致点的索引值
* @param[out]	best_error	输出最小损失函数
*/
template<typename T, typename U>
int ransac(vector<T> &data, int n, int k, double t, int d,
			U &best_model,set<int> &best_consensus_set, double &best_error){
	//1.初始化
	int  iterations = 0;	//迭代次数
	U maybe_model;			//使用随机选点初始化求得的模型
	U better_model;			//根据符合条件的一致点拟合出的模型
	
	int isFound = 0;					//算法成功的标志
	set<int> maybe_inliers;				//初始随机选取的点(的索引值)

	//best_error = DBL_MAX;	//初始化为最大值
	best_error = 1.7976931348623158e+308;
	default_random_engine rng(time(NULL));					//随机数生成器
	uniform_int_distribution<int> dist(0, data.size()-1);	//采用均匀分布
	
	//2.主循环
	while (iterations < k){
		//3.随机选点
		maybe_inliers.clear();	
		while (1){
			int index = dist(rng);
			maybe_inliers.insert(index);
			if (maybe_inliers.size() == n){
				break;
			}
		}
		//4.计算初始值
		maybe_model.Update(data, maybe_inliers);								//自定义函数,更新模型
		set<int> consensus_set(maybe_inliers.begin(),maybe_inliers.end());		//选取模型后,根据误差阈值t选取的内点(的索引值)

		//5.根据初始模型和阈值t选择内点	
		for (int i = 0; i < data.size(); i++){
			double error_per_item = maybe_model.computeError(data[i]);
			if (error_per_item < t){
				consensus_set.insert(i);
			}
		}
		//6.根据全部的内点重新计算模型
		if (consensus_set.size() > d){
			double this_error = better_model.Estimate(data, consensus_set);		//自定义函数,(最小二乘)更新模型,返回计算出的误差
			//7.若当前模型更好,则更新输出量
			if (this_error < best_error){
				best_model = better_model;
				best_consensus_set = consensus_set;
				best_error = this_error;
			}
			isFound = 1;
		}
		++iterations;
	}
	return isFound;
}


int main(){
	//1.读入数据
	int data_size;		//输入第一行表示数据大小
	cin >> data_size;	
	vector<st_point> Points(data_size);
	for (int i = 0; i < data_size; i++){
		cin >> Points[i].x >> Points[i].y;
	}
	//测试用
	//vector<st_point> Points{ st_point(3, 4), st_point(6, 8), st_point(9, 12), st_point(15, 20), st_point(10,-10)};
	//int data_size = Points.size();
	//2.设置输入量
	int k = 50;				//最大迭代次数
	int n = 2;				//适用于模型的最少数据个数
	double t = 0.01;		//用于决定数据是否适应于模型的阀值
	int d = data_size*0.5;	//判定模型是否适用于数据集的数据数目 
	//3.初始化输出量
	linearModel best_model;			//最佳线性模型
	set<int> best_consensus_set;	//记录一致点索引的set
	double best_error;				//最小残差
	//4.运行RANSAC			
	int status = ransac(Points, n, k, t, d, best_model, best_consensus_set, best_error);
	//5.输出
	cout << best_model.A << " " << best_model.B << " " << best_model.C << endl;
	return 0;
}

运行结果:

k = 50, n=2, t=0.01, d = data_size*0.5时

解法1:

您的代码已保存
答案正确:恭喜!您提交的程序通过了所有的测试用例

解法2:

您的代码已保存
答案错误:您提交的程序没有通过所有的测试用例
case通过率为77.78%

简单解法:

可将Estimate的步骤注释掉进行实验,根据consensus_set计算this_error

您的代码已保存
答案正确:恭喜!您提交的程序通过了所有的测试用例

 

  • 4
    点赞
  • 53
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值