信息流广告ROI线性预测看板&投放分析监控看板展示&数据处理入库全流程

本文介绍了X公司在面对日益增长的业务数据时,如何构建半自动数据处理流程,将抖音和淘宝数据入库,并利用Python进行数据清洗及ROI预测。通过Tableau构建的监控看板包括分离条形图、箱型图等,帮助优化投放策略。运用机器学习模型,如多元线性回归,预测ROI以指导业务决策。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

ROI线性预测看板

在这里插入图片描述

投放分析监控看板

在这里插入图片描述

项目背景

:X公司是一家专注于抖音广告投放的公司,该公司的北极星指标是ROI(ROI=GMV/成本),随着业务发展,数据量级逐日上升,数据部门决定开发一个半自动的数据处理流程,将数据入库,对大量业务数据进行结构化的存储。业务所拥有的数据来自抖音和淘宝两端的数据。

项目目的

1.对已有业务数据实现半自动化数据处理流程
2.搭建能指导业务策略的数据看板
3.在本周只有成交数的情况下利用机器学习模型预测ROI,对投放策略进行精准的调整

项目流程

Prep自动化处理数据入库数据

1.抖音前端数据处理

1.1在该文件夹中创建一个与抖音表相同格式(.xls)且不空白的文件,命名为0000路径文件,作为TPB读取数据的路径锚点。

在这里插入图片描述
该文件具体

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值