Federated Meta-Learning with Fast Convergence and Efficient Communication论文阅读笔记

本文介绍了Federated Meta-Learning(FedMeta)框架,该框架结合了元学习和联邦学习的优势,实现更快的收敛速度和更少的通信开销。FedMeta仅共享meta-learner,保护用户隐私。实验表明,FedMeta在LEAF数据集和实际推荐任务上表现出优于FedAvg的性能和效率。
摘要由CSDN通过智能技术生成

摘要

在移动设备上分布式训练机器学习模型所面对的统计和系统上的挑战是联邦学习现实应用中的瓶颈。本文通过实验说明meta-learning是解决这些问题的自然选择,并且提出了一个联邦元学习的框架FedMeta。和联邦学习相比,联邦元学习只共享meta-learner,而不是一整个模型。作者在LEAF数据集和一个真实的生产数据集上进行了实验。实验结果表明FedMeta更快收敛、需要的通信开销更少,并且相比于FedAvg能取得更高的准确率。同时,FedMeta只共享meta-learner,从而保护了隐私。

介绍

数据的物理分散、隐私的敏感性以及移动设备算力的提升促进了联邦学习的研究。然而联邦学习面临着统计和系统上的挑战。在统计上,分散的数据是非独立同分布、高度个性化并且异构的,这会降低模型的准确率。在系统上,设备的数量设备的数量通常比传统的分布式设置大几个数量级。并且,每台设备可能在内存、算力、通信能力上都有很强的限制。为了解决这两个问题,Google提出了Federated Averaging(FedAvg)算法。

基于初始化的meta-learning算法,如MAML,对于新的task具有良好的适应性和泛化性,因此十分适用于非独立同分布并且高度个性化的分散训练数据。

FedMeta将MAML应用于联邦学习。在元学习中,通过meta-training的阶段进行task-level的训练,利用大量的task训练出一个meta-learner。对于每个task,都会训练一个task-specific的模型,每个task的训练数据被分为support set和query set,测试的结果(在query set上的loss࿰

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值