联邦学习+元学习:Federated Meta-Learning with Fast Convergence and Efficient Communication.(Fed-Meta)

Federated Meta-Learning with Fast Convergence and Efficient Communication.(Fed-Meta)

1.动机:

元学习算法:对于new tasks快速适应和有良好的泛化能力,适合联邦设置(去中心化的训练数据是Non-iid和高度个性化的
key:共享参数化算法(或元学习器),而不是以前的方法中的全局模型
【举例】在图像分类任务中,n个类别的图像可能会被不均匀的分布在客户端,每个客户端拥有的类别数为k(k《=n)
在联邦学习中,会训练一个large n-way 分类器来利用所有客户端的数据,而一个k-way的分类器对于一个客户端就足够;
在元学习中,算法可以训练包含不同类别的任务
综上,在联邦元学习中,可以使用元学习来训练一个k-way分类器进行初始化,以此降低通信成本。
note
(1)元学习:让机器拥有学习的能力,元学习广泛应用于小样本学习中,在元学习中,训练样本中的训练集称为support set,训练样本中的测试集叫做query set。在机器学习中,只有一个大样本数据集,将这一个大数据集分成了两部分,称为train set和test set;
但是在元学习中,不止一个数据集,有多少个不同的任务,就有多少个数据集,然后每个数据集又分成两部分,分别称为support set和query set。
(2)元学习的损失通过N个任务的测试损失相加得到。MAML所要优化的损失是在任务训练之后的测试loss,而pre-training是直接在原有基础上求损失没有经过训练)

2.提出的算法:federated meta-learning framework

在元学习中:参数化方法(parameterized algorithm)或说meta-learner是通过meta-training过程从大量任务中慢慢学习的,在each task中快速训练一个特定的模型。一个任务通常由互不关联的support set和query set组成。在support set上训练特定任务模型,然后在query set上测试,测试结果用于新算法。
在联邦元学习中:算法在server上进行维护,并(将算法)分发到clients端进行模型训练。在元学习的每一个episode中,一批sampled clients接受算法参数并进行模型训练,然后将query set上的测试结果上传到server端进行算法更新(见Figure 1)。
在这里插入图片描述
本文提出的联邦元学习框架将每个客户端视作一个task,目标不是训练一个包含所有任务的global model,而是训练一个初始化良好,能够快速适应新任务的模型。

2.1文字介绍

1)将元学习融入联邦学习框架,目标:利用分布在clients的数据,协同地对算法进行元训练。
2)机制:
将元学习融入联邦学习框架,目标:利用分布在clients的数据,协同地对算法进行元训练。

传输的信息:
① 模型初始化参数(model parameter initialization from server to clients)
② test loss (from clients to server)

③ 在Meta-SGD中,学习率 α \alpha α也进行传递(for inner loop model training)

2.2 流程

在这里插入图片描述这是关于联邦元学习的算法流程:
1)服务器端更新:
抽样客户端,为选中的客户端分发初始化的模型参数,在每一个客户端进行各自的模型更新,更新完成之后进行测试损失的平均
(MAML与Meta-SGD的区别只在于后者多出一个学习率参数;)

2)客户端更新
先在训练集Support上学习,模型参数更新为 s e i t a seita seita,然后据在测试集Qurray上进行测试,得到测试损失L,然后返回给服务器。

3.比较联邦元学习和联邦学习

1)联邦学习在server和clients间传输的是全局模型,联邦元学习传输的是算法
2)联邦元学习中的共享算法可以比联邦学习中的共享模型更灵活。

我的理解:利用来自于各个用户的测试损失来对服务器端的模型初始化进行微调,以此来找到一个好的初始化信息。
与直观的FedAvg不同,FedAvg(Meta)使用测试客户机的支持集在测试之前对从服务器接收到的模型初始化进行微调,这体现了元学习的本质——“学习微调”

### 联邦学习结合DPOS机制的研究和应用案例 #### 1. 结合背景介绍 联邦学习是一种分布式机器学习框架,在该框架下多个参与方可以在不交换本地数据的情况下共同训练模型,从而有效保护了数据隐私[^2]。另一方面,委托权益证明(Delegated Proof of Stake, DPOS)作为一种高效的共识算法被广泛应用于联盟链环境中,其特点在于能够快速达成一致并具有较高的吞吐率[^3]。 #### 2. 应用场景分析 当联邦学习与DPOS相结合时,可以创建一种既保障数据私密性又具备高效决策能力的新颖架构: - **节点选举优化**:借助于DPOS中的代表投票制度来选出可靠的聚合者作为联邦学习过程中的协调员。这些由社区成员推选出来的超级节点负责收集来自各个客户端更新后的梯度信息,并执行全局模型参数的加权平均操作。 - **激励机制设计**:为了鼓励更多实体参与到联邦学习过程中,可以通过发行代币奖励那些积极参与贡献高质量样本集以及计算资源的企业和个人。这种经济刺激措施有助于扩大生态系统的规模并促进良性循环发展。 #### 3. 实际案例展示 一个典型的实例是在医疗健康领域内的跨机构协作平台建设上进行了探索性的尝试。具体而言: ```python class FL_DPOSPlatform: def __init__(self): self.super_nodes = [] # 存储当选的超级节点列表 def elect_super_node(self, candidates): """模拟DPOS下的超级节点选举流程""" pass def aggregate_gradients(self, gradients_list): """实现联邦平均算法用于汇总各地提交来的局部梯度""" aggregated_gradient = sum(gradients_list)/len(gradients_list) return aggregated_gradient ``` 在这个平台上,不同医院之间无需直接传输患者的具体诊疗记录就能联合起来改进疾病诊断模型。与此同时,利用DPOS特有的治理结构确保整个网络运行稳定可靠的同时还兼顾到了公平性和透明度的要求。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值