Transformer

Transformer

在这里插入图片描述

流程

**第一步:**获取输入句子的每一个单词的表示向量 XX由单词的 Embedding(Embedding就是从原始数据提取出来的Feature) 和单词位置的 Embedding 相加得到。
在这里插入图片描述

**第二步:**将得到的单词表示向量矩阵 (如上图所示,每一行是一个单词的表示 x) 传入 Encoder 中,经过 6 个 Encoder block 后可以得到句子所有单词的编码信息矩阵 C,如下图。单词向量矩阵用 X_(n*d)表示, n 是句子中单词个数,d 是表示向量的维度 (论文中 d=512)。每一个 Encoder block 输出的矩阵维度与输入完全一致。
在这里插入图片描述

第三步:将 Encoder 输出的编码信息矩阵 C传递到 Decoder 中,Decoder 依次会根据当前翻译过的单词 1~ i 翻译下一个单词 i+1,如下图所示。在使用的过程中,翻译到单词 i+1 的时候需要通过 Mask (掩盖) 操作遮盖住 i+1 之后的单词。
在这里插入图片描述

上图 Decoder 接收了 Encoder 的编码矩阵 C,然后首先输入一个翻译开始符 Begin,预测第一个单词 “I”;然后输入翻译开始符 Begin 和单词 “I”,预测单词 “have”,以此类推。这是 Transformer 使用时候的大致流程,接下来是里面各个部分的细节。

输入

把每个单词Embedding(512维)和位置Embedding(512维)相加起来,得到最终的Transformer的输入(512维)。

单词Embedding

单词Embedding:Word2Vec等方法将每个单词转为512维的向量;

位置Embedding

位置Embedding:因为Transformer不采用RNN的结构,而是采样全局的信息,需要并行进行计算,不是像RNN那样一个个单词依次计算,所以我们不光要知道每个单词的信息,还要知道每个单词的位置。所以Transformer还需要输入每个单词的位置信息。这里是使用Embedding来保存每个单词在序列中的相对或绝对位置。

Transformer中是使用正余弦公式来得到每个单词的位置信息(512维)的:
P E ( p o s , 2 i ) = sin ⁡ ( p o s / 1000 0 2 i / d ) P E ( p o s , 2 i + 1 ) = cos ⁡ ( p o s / 1000 0 2 i / d ) \begin{array}{c} P E_{(p o s, 2 i)}=\sin \left(p o s / 10000^{2 i / d}\right) \\ P E_{(p o s, 2 i+1)}=\cos \left(p o s / 10000^{2 i / d}\right) \end{array} PE(pos,2i)=sin(pos/100002i/d)PE(pos,2i+1)=cos(pos/100002i/d)

其中,pos 表示单词在句子中的位置,d 表示 PE的维度 (与词 Embedding 一样),2i 表示偶数的维度,2i+1 表示奇数维度 (即 2i≤d, 2i+1≤d)。使用这种公式计算 PE 有以下的好处:

  • 使 PE 能够适应比训练集里面所有句子更长的句子,假设训练集里面最长的句子是有 20 个单词,突然来了一个长度为 21 的句子,则使用公式计算的方法可以计算出第 21 位的 Embedding。
  • 可以让模型容易地计算出相对位置,对于固定长度的间距 k,PE(pos+k) 可以用 PE(pos) 计算得到。因为 Sin(A+B) = Sin(A)Cos(B) + Cos(A)Sin(B), Cos(A+B) = Cos(A)Cos(B) - Sin(A)Sin(B)。

将单词的词 Embedding 和位置 Embedding 相加,就可以得到单词的表示向量 xx 就是 Transformer 的输入。

自注意力机制

在这里插入图片描述
上图是论文中 Transformer 的内部结构图,左侧为 Encoder block,右侧为 Decoder block。红色圈中的部分为 Multi-Head Attention,是由多个 Self-Attention组成的,可以看到 Encoder block 包含一个 Multi-Head Attention,而 Decoder block 包含两个 Multi-Head Attention (其中有一个用到 Masked)。Multi-Head Attention 上方还包括一个 Add & Norm 层,Add 表示残差连接 (Residual Connection) 用于防止网络退化,Norm 表示 Layer Normalization,用于对每一层的激活值进行归一化。

因为 Self-Attention是 Transformer 的重点,所以我们重点关注 Multi-Head Attention 以及 Self-Attention,首先详细了解一下 Self-Attention 的内部逻辑。

Self-Attention 结构

在这里插入图片描述

上图是 Self-Attention 的结构,在计算的时候需要用到矩阵Q(查询),K(键值),V(值)。在实际中,Self-Attention 接收的是输入(单词的表示向量x组成的矩阵X) 或者上一个 Encoder block 的输出。而Q,K,V正是通过 Self-Attention 的输入进行线性变换得到的。

Q, K, V 的计算

Self-Attention 的输入用矩阵X进行表示,则可以使用线性变阵矩阵WQ,WK,WV计算得到Q,K,V。计算如下图所示,注意 X, Q, K, V 的每一行都表示一个单词。
在这里插入图片描述

Self-Attention 的输出

得到矩阵 Q, K, V之后就可以计算出 Self-Attention 的输出了,计算的公式如下:

公式中计算矩阵QK每一行向量的内积,为了防止内积过大,因此除以d_k的平方根。Q乘以K的转置后,得到的矩阵行列数都为 n,n 为句子单词数,这个矩阵可以表示单词之间的 attention 强度。下图为Q乘以K^T,1234 表示的是句子中的单词。
在这里插入图片描述

得到QK^T之后,使用 Softmax 计算每一个单词对于其他单词的 attention 系数,公式中的 Softmax 是对矩阵的每一行进行 Softmax,即每一行的和都变为 1.
在这里插入图片描述
得到 Softmax 矩阵之后可以和V相乘,得到最终的输出Z
在这里插入图片描述

上图中 Softmax 矩阵的第 1 行表示单词 1 与其他所有单词的 attention 系数,最终单词 1 的输出 Z_1 等于所有单词 i 的值 V_i 根据 attention 系数的比例加在一起得到,如下图所示:
在这里插入图片描述

Multi-Head Attention

在上一步,我们已经知道怎么通过 Self-Attention 计算得到输出矩阵 Z,而 Multi-Head Attention 是由多个 Self-Attention 组合形成的,下图是论文中 Multi-Head Attention 的结构图。
在这里插入图片描述

从上图可以看到 Multi-Head Attention 包含多个 Self-Attention 层,首先将输入X分别传递到 h 个不同的 Self-Attention 中,计算得到 h 个输出矩阵Z。下图是 h=8 时候的情况,此时会得到 8 个输出矩阵Z
在这里插入图片描述

得到 8 个输出矩阵 Z_1 到 Z_8 之后,Multi-Head Attention 将它们拼接在一起 (Concat),然后传入一个Linear层,得到 Multi-Head Attention 最终的输出Z
在这里插入图片描述

可以看到 Multi-Head Attention 输出的矩阵Z与其输入的矩阵X的维度是一样的。

Encoder 结构

在这里插入图片描述

上图红色部分是 Transformer 的 Encoder block 结构,可以看到是由 Multi-Head Attention, Add & Norm, Feed Forward, Add & Norm 组成的。刚刚已经了解了 Multi-Head Attention 的计算过程,现在了解一下 Add & Norm 和 Feed Forward 部分。

Add & Norm

Add & Norm 层由 Add 和 Norm 两部分组成,其计算公式如下:
L a y e r N o r m ( X + M u l t i H e a d A t t e n t i o n ( X ) ) L a y e r N o r m ( X + F e e d F o r w a r d ( X ) ) \begin{array}{c} LayerNorm(X + MultiHeadAttention(X)) \\ LayerNorm(X + FeedForward(X)) \end{array} LayerNorm(X+MultiHeadAttention(X))LayerNorm(X+FeedForward(X))
其中 X表示 Multi-Head Attention 或者 Feed Forward 的输入,MultiHeadAttention(X) 和 FeedForward(X) 表示输出 (输出与输入 X 维度是一样的,所以可以相加)。

AddX+MultiHeadAttention(X),是一种残差连接,通常用于解决多层网络训练的问题,可以让网络只关注当前差异的部分,在 ResNet 中经常用到:
在这里插入图片描述

Norm指 Layer Normalization,通常用于 RNN 结构,Layer Normalization 会将每一层神经元的输入都转成均值方差都一样的,这样可以加快收敛。

Feed Forward

Feed Forward 层比较简单,是一个两层的全连接层,第一层的激活函数为 Relu,第二层不使用激活函数,对应的公式如下。
m a x ( 0 , X W 1 + b 1 ) W 2 + b 2 max(0,XW_1+b_1)W_2 + b_2 max(0,XW1+b1)W2+b2
X是输入,Feed Forward 最终得到的输出矩阵的维度与X一致。

组成 Encoder

通过上面描述的 Multi-Head Attention, Feed Forward, Add & Norm 就可以构造出一个 Encoder block,Encoder block 接收输入矩阵 X ( n × d ) X_(n×d) X(n×d) ,并输出一个矩阵 O ( n × d ) O(n×d) O(n×d) 。通过多个 Encoder block 叠加就可以组成 Encoder。

第一个 Encoder block 的输入为句子单词的表示向量矩阵,后续 Encoder block 的输入是前一个 Encoder block 的输出,最后一个 Encoder block 输出的矩阵就是编码信息矩阵 C,这一矩阵后续会用到 Decoder 中。
在这里插入图片描述

Decoder 结构

在这里插入图片描述

上图红色部分为 Transformer 的 Decoder block 结构,与 Encoder block 相似,但是存在一些区别:

  • 包含两个 Multi-Head Attention 层。
  • 第一个 Multi-Head Attention 层采用了 Masked 操作。
  • 第二个 Multi-Head Attention 层的K, V矩阵使用 Encoder 的编码信息矩阵C进行计算,而Q使用上一个 Decoder block 的输出计算。
  • 最后有一个 Softmax 层计算下一个翻译单词的概率。

第一个 Multi-Head Attention

Decoder block 的第一个 Multi-Head Attention 采用了 Masked 操作,因为在翻译的过程中是顺序翻译的,即翻译完第 i 个单词,才可以翻译第 i+1 个单词。通过 Masked 操作可以防止第 i 个单词知道 i+1 个单词之后的信息。下面以 “我有一只猫” 翻译成 “I have a cat” 为例,了解一下 Masked 操作。

下面的描述中使用了类似 Teacher Forcing 的概念,不熟悉 Teacher Forcing 的童鞋可以参考以下上一篇文章Seq2Seq 模型详解。在 Decoder 的时候,是需要根据之前的翻译,求解当前最有可能的翻译,如下图所示。首先根据输入 “Begin” 预测出第一个单词为 “I”,然后根据输入 “Begin I” 预测下一个单词 “have”。
在这里插入图片描述

Decoder 可以在训练的过程中使用 Teacher Forcing 并且并行化训练,即将正确的单词序列 (Begin I have a cat) 和对应输出 (I have a cat end) 传递到 Decoder。那么在预测第 i 个输出时,就要将第 i+1 之后的单词掩盖住,注意 Mask 操作是在 Self-Attention 的 Softmax 之前使用的,下面用 0 1 2 3 4 5 分别表示 “Begin> I have a cat end”。

第一步: 是 Decoder 的输入矩阵和 Mask 矩阵,输入矩阵包含 “Begin I have a cat” (0, 1, 2, 3, 4) 五个单词的表示向量,Mask 是一个 5×5 的矩阵。在 Mask 可以发现单词 0 只能使用单词 0 的信息,而单词 1 可以使用单词 0, 1 的信息,即只能使用之前的信息。
在这里插入图片描述

第二步: 接下来的操作和之前的 Self-Attention 一样,通过输入矩阵X计算得到Q,K,V矩阵。然后计算Q K T K^T KT 的乘积 Q K T QK^T QKT
在这里插入图片描述

第三步: 在得到 Q K T QK^T QKT 之后需要进行 Softmax,计算 attention score,我们在 Softmax 之前需要使用Mask矩阵遮挡住每一个单词之后的信息,遮挡操作如下:
在这里插入图片描述

得到 Mask Q K T QK^T QKT 之后在 Mask Q K T QK^T QKT上进行 Softmax,每一行的和都为 1。但是单词 0 在单词 1, 2, 3, 4 上的 attention score 都为 0。

第四步: 使用 Mask Q K T QK^T QKT与矩阵 V相乘,得到输出 Z,则单词 1 的输出向量 Z 1 Z_1 Z1 是只包含单词 1 信息的。
在这里插入图片描述

第五步: 通过上述步骤就可以得到一个 Mask Self-Attention 的输出矩阵 Z 1 Z_1 Z1 ,然后和 Encoder 类似,通过 Multi-Head Attention 拼接多个输出 Z 1 Z_1 Z1 然后计算得到第一个 Multi-Head Attention 的输出ZZ与输入X维度一样。

第二个 Multi-Head Attention

Decoder block 第二个 Multi-Head Attention 变化不大, 主要的区别在于其中 Self-Attention 的 K, V矩阵不是使用 上一个 Decoder block 的输出计算的,而是使用 Encoder 的编码信息矩阵 C 计算的。

根据 Encoder 的输出 C计算得到 K, V,根据上一个 Decoder block 的输出 Z 计算 Q (如果是第一个 Decoder block 则使用输入矩阵 X 进行计算),后续的计算方法与之前描述的一致。

这样做的好处是在 Decoder 的时候,每一位单词都可以利用到 Encoder 所有单词的信息 (这些信息无需 Mask)。

Softmax 预测输出单词

Decoder block 最后的部分是利用 Softmax 预测下一个单词,在之前的网络层我们可以得到一个最终的输出 Z,因为 Mask 的存在,使得单词 0 的输出 Z0 只包含单词 0 的信息,如下:
在这里插入图片描述

Softmax 根据输出矩阵的每一行预测下一个单词:
在这里插入图片描述

这就是 Decoder block 的定义,与 Encoder 一样,Decoder 是由多个 Decoder block 组合而成。

Transformer 总结

  • Transformer 与 RNN 不同,可以比较好地并行训练。
  • Transformer 本身是不能利用单词的顺序信息的,因此需要在输入中添加位置 Embedding,否则 Transformer 就是一个词袋模型了。
  • Transformer 的重点是 Self-Attention 结构,其中用到的 Q, K, V矩阵通过输出进行线性变换得到。
  • Transformer 中 Multi-Head Attention 中有多个 Self-Attention,可以捕获单词之间多种维度上的相关系数 attention score。

注:
embedding层作用:1.降维2.对低维的数据进行升维时,可能把一些其他特征给放大了,或者把笼统的特征给分开了。
Embedding其实就是一个映射,从原先所属的空间映射到新的多维空间中,也就是把原先所在空间嵌入到一个新的空间中去。

  1. 注意力机制 & 自注意力模型
  2. 【Transformer 相关理论深入理解】注意力机制、自注意力机制、多头注意力机制、位置编码
  3. 自注意力机制(Self-Attention)
  4. 详解自注意力机制中的位置编码(第一部分
  5. Transformer模型详解(图解最完整版)
  6. 【Transformer专题】一、Attention is All You Need(Transformer入门)
  7. Embedding层的作用
  8. EMBEDDING层作用
  9. 注意力机制
  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值