GOOD: A global orthographic object descriptor for 3D object recognition and manipulation论文阅读

该文提出了一种新的特征描述方法——GOOD,通过点云分析获取唯一参考系。主要贡献包括设计了一种符号消歧方法和全局对象描述符,该描述符在描述性、计算效率和内存使用之间取得平衡。通过局部参考系确定点云的坐标,使用特征值分解和消歧过程来建立稳定的方向。对象描述符由投影平面的分布矩阵和熵计算得出,用于3D对象的识别和操作。实验表明,这种方法在不同数量的bin下表现稳定。
摘要由CSDN通过智能技术生成

GOOD: A global orthographic object descriptor for 3D object recognition and manipulation

Abstract

提出一种新的特征描述方法(GOOD),通过分析点云,获得特征向量的唯一参考系。

Introduction

Contribution:

  1. 设计一种新的符号消歧方法,通过分割特征向量确定明确唯一的坐标参考系。
  2. 一种使用本地参考系计算的新的全局对象描述符,它在描述性、计算时间和内存使用之间提供了很好的权衡。

Local reference frame

局部坐标系对于旋转和平移不变,对噪声具有鲁棒性,对对象的识别有着很重要的作用。
输入一个点云 o = p 1 , p 2 . . . p m o= {p_1,p_2...p_m} o=p1,p2...pm,其中心点可以被定义为:
c = 1 m ∑ i = 1 m p i c = \frac{1}{m}\sum_{i=1}^mp_i c=m1i=1mpi
对象的归一协方差矩阵可以定义为:
C = 1 m ∑ i = 1 m ( p i − c ) ( p i − c ) T C = \frac{1}{m}\sum^m_{i=1}(p_i-c)(p_i-c)^T C=m1i=1m(pic)(pic)T
在C上进行特征值分解:
C V = E V CV=EV CV=EV
其中 v ⃗ = ( v 1 , v 2 , v 3 ) \vec{v}= (v_1,v_2,v_3) v =(v1,v2,v3),包含了三个特征向量, E = d i a g ( λ 1 , λ 2 , λ 3 ) E = diag(\lambda_1,\lambda_2,\lambda_3) E=diag(λ1,λ2,λ3),对应为特征值对角矩阵。
由于特征向量定义的方向不是唯一的,这导致在PAC(主干成分分析)中不可重复。
假设从一个选定参考系中开始,选定 v 1 , v 2 v_1,v_2 v1,v2分别作为x,y轴,根据右手定则,定义z轴为 v 1 × v 2 v_1\times v_2 v1×v2,这样就可以确定下x轴和y轴的方向,将不确定的方案减少到4个。
为了完成消歧,点云O被放置入局部坐标轴中,因此获得了具有+x和-x的点的数量,被定义为:
S x + = i : x p i > t , S x − = i : x p i < − t , S_x^+ = i:x_{p_i}>t\quad,S_x^-= i:x_{p_i}<-t, Sx+=i:xpi>t,Sx=i:xpi<t,
t=0.015m,因此在不同的实验中可以将X轴从负改为正,然后将 S x S_x Sx定义为:
S x { + 1 , ∣ S x + ∣ ≥ ∣ S x − ∣ − 1 , o t h e r w i s e S_x \begin{cases} +1, & |S_x^+|\geq|S_x^-|\\ -1, & otherwise \end{cases} Sx{+1,1,Sx+Sxotherwise
|.|表示参数的点数,对Y轴同样使用相同的计算方法 S y S_y Sy,坐标轴可以被定义为:
s = S x ⋅ S y s = S_x\centerdot S_y s=SxSy
s可以是-1或1,当s=-1时,坐标轴的方向需要改变,最终的局部坐标轴(LRF)可以被定义为: ( s v 1 , s v 2 , v 1 × v 1 ) (sv_1,sv_2,v_1\times v_1 ) (sv1,sv2,v1×v1)
消歧过程可视化:
在这里插入图片描述

Object descriptor

本节基于LRF(局部坐标轴的)几何中心计算物体的描述符,描述符由三个XOY、XOZ、YOZ三个片面上的投影生成,为了保证不同物体形状之间的比较,每个投影平面内的bin数量必须相同,每个投影平面的长度l都由轴对齐的最大加密包围框确定,通过计算每个坐标轴沿轴的最大值和最小值得到,每个投影面的bin因此被确定下来为n个,每个投影点被定义为 ρ = ( α , β ) \rho=(\alpha,\beta) ρ=(α,β), α , β \alpha,\beta α,β分别为到两投影面的距离,对于每行每列的联系可以被定义为:
50%
分布矩阵 M n × n M_{n\times n} Mn×n由每个bin中落入的点决定,M中的值被归一化,以保证点云密度的不变。根据惯例,各个分布矩阵被转化成一个向量, m 1 × n 2 = [ M ( 1 , 1 ) , M ( 1 , 2 ) , M ( n , n ) ] m_{1\times n^2}=[M(1,1),M(1,2),M(n,n)] m1×n2=[M(1,1),M(1,2),M(n,n)],三个投影图的2d分布矩阵被转化成一个3 × n 2 \times n_2 ×n2的向量,如下图所示:
在这里插入图片描述
在这篇文章中每个投影的熵计算如下:
H ( m ) = − ∑ i = 1 n m i l o g 2 m i H(m)=-\sum^n_{i=1}m_ilog_2m_i H(m)=i=1nmilog2mi
熵最高的投影图作为描述符的前 n 2 n^2 n2项,对于 n 2 , 2 n 2 − 1 n^2,2n^2-1 n2,2n21项则作为方差更小的一项,方差计算公式如下:
σ 2 ( m ) = ∑ i = 1 n ( i − μ m ) 2 m i , μ m = ∑ i = 1 n 2 i m i \sigma^2(m) = \sum_{i=1}^n(i-\mu_m)^2m_i\quad,\mu_m=\sum_{i=1}^{n^2}im_i σ2(m)=i=1n(iμm)2mi,μm=i=1n2imi

方差较小则证明点的分布紧凑,比较接近向量的平均值,方差较大则相反。
通过投影还可获得目标的一些其他特征,下图中展示了可以表达出马克杯的厚度高度的信息。在这里插入图片描述

Experiment

不同数量bin下的实验:
在这里插入图片描述

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值