TensorFlow版本:1.10.0 > Guide > Keras
https://blog.csdn.net/u014061630/article/details/81086564
Keras 简介
Keras 是建立和训练深度学习模型的高级 API。它被用于快速原型、高级研究和生产。Keras 具有三个主要优点:
好用的 API
Keras API 简单、稳定、容易调试。
高度模块化
Keras API 可以像搭积木一样来构建深度学习系统。
易于扩展
可以很容易地实现研究过程中的各种新奇想法。
比如:自定义层、自定义损失函数、提升state of art 模型的性能等。
文章目录
1. 导入 tf.keras ¶
2. 建立简单模型 ¶
2.1 使用 Sequential API 建立简单模型 ¶
2.2 设置层的参数 ¶
3. 建立复杂模型 ¶
3.1 使用 Function API 建立复杂模型 ¶
3.2 编写 Model 的子类来构建模型(Model subclassing) ¶
3.3 自定义 layers ¶
4. 训练和评估 ¶
4.1 配置训练过程 ¶
4.2 输入 Numpy 数据 ¶
4.3 输入 tf.data.datasets ¶
4.4 评估 和 预测 ¶
5. 回调(Callbacks) ¶
6. 模型的保存和恢复 ¶
6.1 只保存参数(Weights only) ¶
6.2 只保存模型(Configuration only) ¶
6.3 整个模型(Entire model) ¶
7. Eager execution ¶
8. 分布式 ¶
8.1 Estimators ¶
8.2 多 GPU ¶
(一)错误总结
1.ModuleNotFoundError: No module named 'tensorflow.keras' 解决方案:
from tensorflow.keras.layers import Layer
换成
from tensorflow.python.keras.layers import Layer