朴素贝叶斯分类器(Naive Bayes,NB)

朴素贝叶斯分类器

  朴素贝叶斯分类器模型属于监督学习模型,是概率模型和生成模型。简而言之,就是先学习类条件概率 p ( x ∣ y ) p(x|y) p(xy)与先验概率 p ( y ) p(y) p(y),根据 p ( x ∣ y ) p(x|y) p(xy) p ( y ) p(y) p(y)利用贝叶斯公式求得 p ( x , y ) p(x,y) p(x,y),最后得到 p ( y ∣ x ) p(y|x) p(yx)的相对大小。


贝叶斯定理

p ( c i ∣ w ) = p ( w , c i ) p ( w ) = p ( w ∣ c i ) p ( c i ) p ( w ) p(c_{i}|w)=\frac{p(w,c_{i})}{p(w)}=\frac{p(w|c_{i})p(c_{i})}{p(w)} p(ciw)=p(w)p(w,ci)=p(w)p(wci)p(ci)
  其中, p ( c i ∣ w ) p(c_{i}|w) p(ciw)为后验概率, p ( c i ) p(c_{i}) p(ci)为先验概率, p ( w ∣ c i ) p(w|c_{i}) p(wci)在NB中称为类条件概率, p ( w , c i ) p(w,c_{i}) p(w,ci)为联合概率。


统计学习方法三要素

模型

  贝叶斯定理,对于输入训练集 T = { ( x 1 , y 1 ) , ( x 2 , y 2 ) , ( x 3 , y 3 ) … ( x N , y N ) } T=\{(x_{1},y_{1}),(x_{2},y_{2}),(x_{3},y_{3}) \dots (x_{N},y_{N})\} T={ (x1,y1),(x2,y2),(x3,y3)(xN,yN)} y ∈ { c 1 , c 2 … c K } y \in \{c_{1},c_{2} \dots c_{K}\} y{ c1,c2cK}
p ( y ∣ x ) = p ( x ∣ y ) p ( y ) p ( x ) p(y|x)=\frac{p(x|y)p(y)}{p(x)} p(yx)=p(x)p(xy)p(y)
  

策略

   后验概率最大,即 a r g max ⁡ y k p ( y k ∣ x i ) arg\max \limits_{y_{k}} p(y_{k}|x_{i}) argykmaxp(ykxi) y k y_{k} yk即为 x i x_{i} xi的最终分类, y k ∈ { c 1 , c 2 , c 3 … c K } y_{k}\in \{c_{1},c_{2},c_{3} \dots c_{K}\} yk{ c1,c2,c3cK},后验概率最大等价于期望损失最小,下面简单证明一下这个结论:
  以0-1损失函数为例:
L ( y , f ( x ) ) = { 0 y = f ( x ) 1 y ≠ f ( x ) L(y,f(x))=\begin{cases} 0 & y=f(x) \\ 1 & y \neq f(x) \end{cases} L(y,f(x))={ 01y=f(x)y̸=f(x)
  其期望风险函数为(这里概率用的后验概率)
R e x p ( f ) = ∑ y k = c 1 c K L ( y k , f ( x i ) ) p ( y k ∣ x i ) = p ( y k ≠ f ( x i ) ∣ x i ) = 1 − p ( y k = f ( x i ) ∣ x i ) \begin{aligned} R_{exp}(f)&=\sum \limits_{y_{k}=c_{1}}^{c_{K}} L(y_{k},f(x_{i}))p(y_{k}|x_{i}) \\ &=p(y_{k}\neq f(x_{i})|x_{i}) \\ &=1-p(y_{k}=f(x_{i})|x_{i}) \end{aligned} Rexp(f)=yk=c1cKL(yk,f(xi))p(ykxi)=p(yk̸=f(xi)xi)=1p(yk=f(xi)xi)

  可见,要使得

  • 0
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值