时序动作定位 | 基于期望最大化多实例学习的弱监督动作定位(ECCV 2020)

EM-MIL模型基于深度学习和双流I3D特征,通过期望最大化和多实例学习进行弱监督动作定位。在E步骤中选择关键实例,M步骤中更新概念。模型通过交替训练关键实例分配和分类分支,利用伪标签提升性能,特别是关注前景类别的关键实例。
摘要由CSDN通过智能技术生成

Weakly-Supervised Action Localization with Expectation-Maximization Multi-Instance Learning(EM-MIL)

每条曲线表示一个袋子,曲线上的点表示袋子中的实例。目标是找到一个概念点,这样每个正袋包

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

编程日记✧

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值