灰狼算法优化

% 灰狼优化算法(求函数极值)
clc;
clear;
close all;
%% 目标函数
f= @(x) - (x - 10) .^ 2 + x .* sin(x) .* cos(2 * x) - 5 * x .* sin(3 * x) ; % 适应度函数表达式(求这个函数的最大值)  
figure(1);
fplot(f, [0 20], 'b-');                 % 画出初始图像 
title('初始图像');
hold on;
%% 初始化参数
N=30;       % 灰狼个数
dim=1;      % 维度
Iter=50;   % 最大迭代次数
a=2;        % 收敛因子
ub=20;      % 最大值限制
lb=0;       % 最小值限制
 
% 初始化alpha,beta,delta
Alpha_pos=zeros(1,dim);    
Alpha_score=-inf; %求最大值改为inf
Beta_pos=zeros(1,dim);
Beta_score=-inf; 
Delta_pos=zeros(1,dim);
Delta_score=-inf;
 
Positions=rand(N,dim).*(ub-lb)+lb;      % 初始化个体位置
Convergence_curve=zeros(1,Iter);        % 收敛曲线
l=0;        %循环次数记录
 
%% 迭代求解
while l<Iter
    for i=1:size(Positions,1)  
        
       % 超出边界处理
        Flag4ub=Positions(i,:)>ub;
        Flag4lb=Positions(i,:)<lb;
        Positions(i,:)=(Positions(i,:).*(~(Flag4ub+Flag4lb)))+ub.*Flag4ub+lb.*Flag4lb;               
        
        % 计算个体适应度函数
        fitness=f(Positions(i,:));
        
        % 更新 Alpha, Beta, and Delta
        if fitness>Alpha_score 
            Alpha_score=fitness; 
            Alpha_pos=Positions(i,:);
        end    
        if fitness<Alpha_score && fitness>Beta_score 
            Beta_score=fitness; 
            Beta_pos=Positions(i,:);
        end     
        if fitness<Alpha_score && fitness<Beta_score && fitness>Delta_score 
            Delta_score=fitness; 
            Delta_pos=Positions(i,:);
        end
    end
       
    a=2-l*((2)/Iter); % 收敛因子从2线性递减到0
    
    % 更新灰狼个体的位置
    for i=1:size(Positions,1)
        for j=1:size(Positions,2)     
            
            r1=rand(); % r1 is a random number in [0,1]
            r2=rand(); % r2 is a random number in [0,1]   
            A1=2*a*r1-a;
            C1=2*r2;
            D_alpha=abs(C1*Alpha_pos(j)-Positions(i,j)); 
            X1=Alpha_pos(j)-A1*D_alpha;
                       
            r1=rand();
            r2=rand();          
            A2=2*a*r1-a;
            C2=2*r2;       
            D_beta=abs(C2*Beta_pos(j)-Positions(i,j));
            X2=Beta_pos(j)-A2*D_beta;
            
            r1=rand();
            r2=rand();          
            A3=2*a*r1-a; 
            C3=2*r2;          
            D_delta=abs(C3*Delta_pos(j)-Positions(i,j));
            X3=Delta_pos(j)-A3*D_delta;
            
            Positions(i,j)=(X1+X2+X3)/3;% Equation (3.7)         
        end
    end
    l=l+1;    
    Convergence_curve(l)=Alpha_score;
end
plot(Alpha_pos, f(Alpha_pos), '*r');
 
figure(2);
plot(Convergence_curve);
title('收敛过程'); 
 
display(['The best solution obtained by GWO is : ', num2str(Alpha_pos)]);
display(['The best optimal value of the objective funciton found by GWO is : ', num2str(Alpha_score)]);

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
基于灰狼算法优化SVM(支持向量机)是一种使用灰狼算法来确定SVM超参数的方法。SVM是一个非常强大的监督学习算法,可以用于分类和回归问题。而灰狼算法是受灰狼行为启发的优化算法,适用于寻找最优解的问题。 在使用基于灰狼算法优化SVM的过程中,首先需要设置一组SVM的超参数,如核函数类型、惩罚因子等。然后,根据这些初始参数,利用灰狼算法的搜索策略进行优化灰狼算法将一系列解看作灰狼的位置,每个解对应一个灰狼的位置。通过模拟灰狼群体的社会行为,算法不断地更新解的位置,以找到最优解。在每次迭代中,通过计算每个灰狼的适应度来确定其位置的更新。适应度由SVM在训练集上的准确度或其他性能指标来衡量。 当灰狼位置更新时,比较其适应度,选择最优的灰狼作为当前最佳解。不断迭代直到满足停止条件为止。最终,找到的最佳解即为通过灰狼算法优化后的SVM超参数。 通过使用基于灰狼算法优化SVM,可以提高SVM在分类或回归问题上的性能和泛化能力。这种方法相比传统的网格搜索或随机搜索,具有更强的全局搜索能力,可以更快地找到更优的超参数组合。 总之,基于灰狼算法优化SVM是一种通过使用灰狼算法来确定SVM超参数的方法,可以提高SVM的性能和泛化能力,适用于分类和回归问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

优化大师傅

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值