全量微调
主要思路:在预训练模型的每一层(或某些层)中添加适配器模块,微调时冻结预训练模型主体,由适配器模块学习特定下游任务的知识。每个适配器模块由两个前馈子层组成,第一个前馈子层将模型的输出作为输入,将原始输入维度投影到一个较小的维度,第二个前馈子层再将其还原到原始输入维度作为输出。因为对模型的所有参数进行了调整,所以可以充分利用预训练模型的通用特征,能够较好地适应特定任务,在一些情况下可以获得较高的性能表现。例如,在图像分类任务中,如果有足够的计算资源和数据,全量微调可以使模型对特定类别的识别准确率大幅提高。
但计算成本较高,需要大量的计算资源和时间来训练模型,尤其是对于非常大的模型。而且,如果特定任务的数据量较少,可能会导致过拟合的问题。
基于适配器的微调
在预训练的大型模型基础上,对模型的所有层和参数进行调整,使其适应特定任务。在这个过程中,模型会根据特定任务的数据重新学习和更新所有的权重参数,以达到更好地完成该任务的目的。
优点是因为对模型的所有参数进行了调整,所以可以充分利用预训练模型的通用特征,能够较好地适应特定任务,在一些情况下可以获得较高的性能表现。例如,在图像分类任务中,如果有足够的计算资源和数据,全量微调可以使模型对特定类别的识别准确率大幅提高。
缺点是计算成本较高,需要大量的计算资源和时间来训练模型,尤其是对于非常大的模型。而且,如果特定任务的数据量较少,可能会导致过拟合的问题。
基于低秩适应(LoRA)的微调
LoRA的实现思想很简单,如下图所示,就是冻结一个预训练模型的矩阵参数,并选择用A和B矩阵来替代,在下游任务时只更新A和B。
基于提示学习(Prompt Tuning)的微调
通过在输入文本中添加提示信息,引导模型更好地理解任务,并根据提示信息进行预测。提示信息可以是一些特定的文本片段、关键词或者问题模板等,其目的是将下游任务转化为与预训练模型的预训练任务相似的形式,以便模型能够更好地利用预训练的知识。
主要优势是不需要对模型的结构进行修改,只需要在输入层进行操作,因此非常简单方便。同时,提示学习可以灵活地应用于各种不同的任务,具有较强的通用性。
缺点是提示的设计需要一定的经验和技巧,不同的提示可能会对模型的性能产生较大的影响。而且,如果提示信息与模型的预训练知识不匹配,可能会导致性能下降。
基于动态预测加速的微调
利用一些技巧减少在预测时花费的时间,例如动态地选择模型的部分层进行计算,或者根据输入数据的特点自适应地调整模型的计算策略等。优点是可以在不影响模型性能的前提下,提高模型的预测速度,对于一些对实时性要求较高的应用场景非常重要。
但需要对模型的结构和计算流程进行深入的理解和优化,实现起来相对复杂,而且可能需要根据不同的模型和任务进行定制化的开发。
知识蒸馏方法
训练一个小的学生模型来模拟大的老师模型。首先使用大量的数据训练一个大型的预训练模型(老师模型),然后使用老师模型的输出作为监督信号,来训练一个较小的学生模型。在训练过程中,学生模型学习老师模型的行为和预测结果,从而在保持较高性能的同时,降低模型的复杂度和计算成本。
优点:可以大大降低模型的计算成本和存储需求,同时能够保持较高的性能。对于一些资源受限的场景,如移动设备或嵌入式系统,模型蒸馏是一种非常有效的方法。
缺点:训练过程相对复杂,需要先训练一个大型的老师模型,然后再训练学生模型。而且,如果老师模型的性能不够好,或者学生模型的结构设计不合理,可能会导致性能下降。
下面给大家分享一份2025最新版的大模型学习路线,帮助新人小白更系统、更快速的学习大模型!
因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取
2024最新版CSDN大礼包:《AGI大模型学习资源包》免费分享**
一、2025最新大模型学习路线
一个明确的学习路线可以帮助新人了解从哪里开始,按照什么顺序学习,以及需要掌握哪些知识点。大模型领域涉及的知识点非常广泛,没有明确的学习路线可能会导致新人感到迷茫,不知道应该专注于哪些内容。
我们把学习路线分成L1到L4四个阶段,一步步带你从入门到进阶,从理论到实战。
L1级别:AI大模型时代的华丽登场
L1阶段:我们会去了解大模型的基础知识,以及大模型在各个行业的应用和分析;学习理解大模型的核心原理,关键技术,以及大模型应用场景;通过理论原理结合多个项目实战,从提示工程基础到提示工程进阶,掌握Prompt提示工程。
L2级别:AI大模型RAG应用开发工程
L2阶段是我们的AI大模型RAG应用开发工程,我们会去学习RAG检索增强生成:包括Naive RAG、Advanced-RAG以及RAG性能评估,还有GraphRAG在内的多个RAG热门项目的分析。
L3级别:大模型Agent应用架构进阶实践
L3阶段:大模型Agent应用架构进阶实现,我们会去学习LangChain、 LIamaIndex框架,也会学习到AutoGPT、 MetaGPT等多Agent系统,打造我们自己的Agent智能体;同时还可以学习到包括Coze、Dify在内的可视化工具的使用。
L4级别:大模型微调与私有化部署
L4阶段:大模型的微调和私有化部署,我们会更加深入的探讨Transformer架构,学习大模型的微调技术,利用DeepSpeed、Lamam Factory等工具快速进行模型微调;并通过Ollama、vLLM等推理部署框架,实现模型的快速部署。
整个大模型学习路线L1主要是对大模型的理论基础、生态以及提示词他的一个学习掌握;而L3 L4更多的是通过项目实战来掌握大模型的应用开发,针对以上大模型的学习路线我们也整理了对应的学习视频教程,和配套的学习资料。
二、大模型经典PDF书籍
书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础。(书籍含电子版PDF)
三、大模型视频教程
对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识。
四、大模型项目实战
学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。
五、大模型面试题
面试不仅是技术的较量,更需要充分的准备。
在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。
因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取