MIT 18.06 linear algebra 第二十三讲笔记

MIT 18.06 linear algebra 第二十三讲笔记


第二十三课课程要点:

  • Differential Equation dudt=AU d u d t = A U
  • Exponential eAt e A t of a matrix

本节跳跃有点大,其实好些我也没懂,先记录下。

常系数线性方程的解是指数形式的

例子:

{du1dt=u1+2u2du2dt=u12u2 { d u 1 d t = − u 1 + 2 u 2 d u 2 d t = u 1 − 2 u 2 , 其中 U(0)=[10] U ( 0 ) = [ 1 0 ] ,首先把方程组写成 dudt=AU d u d t = A U 的形式,那么矩阵 A=[1122] A = [ − 1 2 1 − 2 ] 。首先求解矩阵 A A 的特征值与特征向量。可以解出特征值为λ1=0,λ2=3,对应的特征向量为 x1=[21],x2=[11] x 1 = [ 2 1 ] , x 2 = [ − 1 1 ]


方程的解为 U(t)=C1eλ1tx1+C2eλ2tx2 U ( t ) = C 1 e λ 1 t x 1 + C 2 e λ 2 t x 2 ,因为上面说 dudt=AU d u d t = A U ,所以如果单单将 eλ1tx1 e λ 1 t x 1 t t 求导的话,结构为λ1eλ1tx1=Aeλ1tx1

t=0 t = 0 时, C1[21]+C2[11]=[10] C 1 [ 2 1 ] + C 2 [ 1 − 1 ] = [ 1 0 ] ,可以解出 C1=C2=13 C 1 = C 2 = 1 3 。进而 U(t)=13[21]+13[11]e3t U ( t ) = 1 3 [ 2 1 ] + 1 3 [ 1 − 1 ] e − 3 t 。所以 U()=13[21] U ( ∞ ) = 1 3 [ 2 1 ]


  1. Stability
    t t → ∞ U(t)0 U ( t ) → 0 需要 eλt0 e λ t → 0 因此 λ<0 λ < 0 。如果我们求解 λ λ 是解出其为复数时,只要复数的实部小于0即可,而不用管虚部如何。在这里实数部分是重要的。
  2. Steady State
    λ1=0 λ 1 = 0 其他的 Reλi<0 R e λ i < 0 其中 Re R e 用来表示实数部分。
  3. Blow up 如果存在  Reλ   R e λ 大于0.

    对于一个 2×2 2 × 2 形式的,要达到稳定状态需要 Reλ1<0andReλ2<0 R e λ 1 < 0 a n d R e λ 2 < 0
    A=[acbd] A = [ a b c d ] ,矩阵的迹 Trace=a+d=λ1+λ2<0 T r a c e = a + d = λ 1 + λ 2 < 0 detA=λ1λ2>0 d e t A = λ 1 λ 2 > 0 ,如果仅保证迹小于零依旧有可能出现Blow up。
    例如矩阵 [2001] [ − 2 0 0 1 ] 就会出现Blow up


dudt=AU d u d t = A U ,矩阵 A A 表明u1 u2 u 2 耦合。
这里让 U=SV U = S V (以特征向量为基,把 U U 表示为SV), dudt=SdVdt=ASV d u d t = S d V d t = A S V dVdt=S1ASV=ΛV d V d t = S − 1 A S V = Λ V |dvidt=λ1v1| | d v i d t = λ 1 v 1 | ,各个未知数之间没有联系的方程组存在,也就达到了解耦的目的。
V(t)=eΛtV(0) V ( t ) = e Λ t V ( 0 ) , U(t)=SeΛtS1U(0)=eAtU(0) U ( t ) = S e Λ t S − 1 U ( 0 ) = e A t U ( 0 )


Matrix exponential
eAt=I+At+(At)22+(At)36++(At)nn! e A t = I + A t + ( A t ) 2 2 + ( A t ) 3 6 + ⋯ + ( A t ) n n ! ,这个就是传说中的泰勒展开,应用到矩阵上的结果。
泰勒展开 11x=0xn 1 1 − x = ∑ 0 ∞ x n ,应用到矩阵上时可以写为: (IAt)1=I+At+(At)2++(At)n ( I − A t ) − 1 = I + A t + ( A t ) 2 + ⋯ + ( A t ) n

上面的 eAt=I+SΛS1t+SΛ2S1t22++SΛnS1tnn!=S(I+Λt+Λ2t22+)=SeΛtS1 e A t = I + S Λ S − 1 t + S Λ 2 S − 1 t 2 2 + ⋯ + S Λ n S − 1 t n n ! = S ( I + Λ t + Λ 2 t 2 2 + ⋯ ) = S e Λ t S − 1

eΛt=eλ1000eλ1000eλnt e Λ t = [ e λ 1 0 ⋯ 0 0 e λ 1 ⋯ 0 ⋮ ⋮ ⋱ ⋮ 0 0 ⋯ e λ n t ] ,其中 Λ Λ 是由特征值组成的对角阵,且 Reλ<0 R e λ < 0 就能收敛。


下面是一个复数平面:
这里写图片描述
图中的圆形区域是矩阵幂的稳定区域,在该区域内特征值的绝对值小于1。灰色区域矩阵的幂收敛于0。

y′′+by+ky=0 y ″ + b y ′ + k y = 0 怎么把这个二阶线性方程化为一阶的呢?可以想想前面一节斐波那契数列的例子。令 U=[yy] U = [ y ′ y ] ,因此 U=[y′′y]=[b1k0][yy] U ′ = [ y ″ y ′ ] = [ − b − k 1 0 ] [ y ′ y ]

以上内容看上去挺乱的,还需后面再整理。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值