面试理想汽车,给我整懵了。。。

理想汽车

今天看到一个帖子,挺有意思的。

先别急着骂草台班子。

像理想汽车这种情况,其实还挺常见的。

就是:_面试官说出一个错误的结论,我们该咋办?_

比较好的做法还是先沟通确认清楚,看看大家是否针对的为同一场景,对某些名词的认识是否统一,其实就是对错误结论的再次确认。

如果确定清楚是面试官的错误,仅做一次不直白的提醒后,看对方是否会陷入不确定,然后进入下一个问题,如果是的话,那就接着往下走。

如果对方还是揪着那个错误结论不放,不断追问。

此时千万不要只拿你认为正确的结论出来和对方辩论。

因为他只有一个结论,你也只有一个结论的话,场面就成了没有理据的争论,谁也说服不了谁。

我们可以从两个方向进行解释:

  • 用逻辑进行正向推导,证明你的结论的正确性

  • 用类似反证法的手段进行解释,试图从他的错误结论出发,往回推,直到推出一个对方能理解的,与常识相违背的基本知识

那么对应今天这个例子,关于「后序遍历」的属于一个定义类的认识。

我们可以用正向推导的方法,试图纠正对方。

可以从另外两种遍历方式进行入手,帮助对方理解。

比如你说:

"您看,前序遍历是「中/根 - 左 - 右」,中序遍历是「左 - 中/根 - 右」"

"所以它这个「X序遍历」的命名规则,主要是看对于一棵子树来说,根节点被何时访问。"

"所以我理解的后序遍历应该是「左 - 右 - 中/根」。"

"这几个遍历确实容易混,所以我都是这样的记忆理解的。"

大家需要搞清楚,这一段的主要目的,不是真的为了教面试官知识,因此适当舍弃一点点的严谨性,提高易懂性,十分重要。

因为我们的主要目的是:_想通过有理据的解释,让他不要再在这个问题下纠缠下去_。

如果是单纯想争对错,就不会有前面的「先进行友好提示,对方如果进行下一问,就接着往下」的前置处理环节。

搞清楚这一段表达的实际目的之后,你大概知道用什么口吻进行解释了,包括上述的最后一句,给对方台阶下,我觉得也是必要的。

对方是错了,但是你没必要给别人落一个「得理不饶人」的印象。

还是谦逊一些,面试场上争对错,赢没赢都是候选人输。

可能会有一些刚毕业的同学,心高气傲,觉得连二叉树这么简单的问题都搞岔的面试官,不值得被尊重。

你要知道,Homebrew 作者去面谷歌的时候,也不会翻转二叉树呢。

难道你要说这世上只有那些知识面是你知识面超集的人,才值得被尊重吗?

显然不是的,大家还是要学会带着同理心的去看待世界。

...

看了一眼,底下评论点赞最高的那位:

什么高情商说法,还得是网友。

所以面试官说的后序遍历是「右 - 左 - 中」?interesting。

...

回归主线。

也别二叉树后续遍历了,直接来个 nn 叉树的后序遍历。

题目描述

平台:LeetCode

题号:590

给定一个 nn 叉树的根节点 rootroot ,返回 其节点值的后序遍历

nn 叉树在输入中按层序遍历进行序列化表示,每组子节点由空值 null 分隔(请参见示例)。

示例 1:

输入:root = [1,null,3,2,4,null,5,6]

输出:[5,6,3,2,4,1]

示例 2:

输入:root = [1,null,2,3,4,5,null,null,6,7,null,8,null,9,10,null,null,11,null,12,null,13,null,null,14]

输出:[2,6,14,11,7,3,12,8,4,13,9,10,5,1]

提示:

  • 节点总数在范围 [0,104][0, 10^4] 内

  • 0<=Node.val<=1040 <= Node.val <= 10^4

  • nn 叉树的高度小于或等于 10001000

进阶:递归法很简单,你可以使用迭代法完成此题吗?

递归

常规做法,不再赘述。

Java 代码:

class Solution {
    List<Integer> ans = new ArrayList<>();
    public List<Integer> postorder(Node root) {
        dfs(root);
        return ans;
    }
    void dfs(Node root) {
        if (root == null) return;
        for (Node node : root.children) dfs(node);
        ans.add(root.val);
    }
}

C++ 代码:

class Solution {
public:
    vector<int> postorder(Node* root) {
        vector<int> ans;
        dfs(root, ans);
        return ans;
    }
    void dfs(Node* root, vector<int>& ans) {
        if (!root) return;
        for (Node* child : root->children) dfs(child, ans);
        ans.push_back(root->val);
    }
};

Python 代码:

class Solution:
    def postorder(self, root: 'Node') -> List[int]:
        def dfs(root, ans):
            if not root: return
            for child in root.children:
                dfs(child, ans)
            ans.append(root.val)
        ans = []
        dfs(root, ans)
        return ans

TypeScript 代码:

function postorder(root: Node | null): number[] {
    const dfs = function(root: Node | null, ans: number[]): void {
        if (!root) return ;
        for (const child of root.children) dfs(child, ans);
        ans.push(root.val);
    };
    const ans: number[] = [];
    dfs(root, ans);
    return ans;
};

  • 时间复杂度:O(n)O(n)

  • 空间复杂度:忽略递归带来的额外空间开销,复杂度为 O(1)O(1)

非递归

针对本题,使用「栈」模拟递归过程。

迭代过程中记录 (cnt = 当前节点遍历过的子节点数量, node = 当前节点) 二元组,每次取出栈顶元素,如果当前节点已经遍历完所有的子节点(当前遍历过的子节点数量为 cnt=子节点数量cnt = 子节点数量),则将当前节点的值加入答案。

否则更新当前元素遍历过的子节点数量,并重新入队,即将 (cnt+1,node)(cnt + 1, node) 入队,以及将下一子节点 (0,node.children[cnt])(0, node.children[cnt]) 进行首次入队。

Java 代码:

class Solution {
    public List<Integer> postorder(Node root) {
        List<Integer> ans = new ArrayList<>();
        Deque<Object[]> d = new ArrayDeque<>();
        d.addLast(new Object[]{0, root});
        while (!d.isEmpty()) {
            Object[] poll = d.pollLast();
            Integer cnt = (Integer)poll[0]; Node t = (Node)poll[1];
            if (t == null) continue;
            if (cnt == t.children.size()) ans.add(t.val);
            if (cnt < t.children.size()) {
                d.addLast(new Object[]{cnt + 1, t});
                d.addLast(new Object[]{0, t.children.get(cnt)});      
            }
        }
        return ans;
    }
}

C++ 代码:

class Solution {
public:
    vector<int> postorder(Node* root) {
        vector<int> ans;
        stack<pair<int, Node*>> st;
        st.push({0, root});
        while (!st.empty()) {
            auto [cnt, t] = st.top();
            st.pop();
            if (!t) continue;
            if (cnt == t->children.size()) ans.push_back(t->val);
            if (cnt < t->children.size()) {
                st.push({cnt + 1, t});
                st.push({0, t->children[cnt]});
            }
        }
        return ans;
    }   
};

Python 代码:

class Solution:
    def postorder(self, root: 'Node') -> List[int]:
        ans = []
        stack = [(0, root)]
        while stack:
            cnt, t = stack.pop()
            if not t: continue
            if cnt == len(t.children):
                ans.append(t.val)
            if cnt < len(t.children):
                stack.append((cnt + 1, t))
                stack.append((0, t.children[cnt]))
        return ans

TypeScript 代码:

function postorder(root: Node | null): number[] {
    const ans = [], stack = [];
    stack.push([0, root]);
    while (stack.length > 0) {
        const [cnt, t] = stack.pop()!;
        if (!t) continue;
        if (cnt === t.children.length) ans.push(t.val);
        if (cnt < t.children.length) {
            stack.push([cnt + 1, t]);
            stack.push([0, t.children[cnt]]);
        }
    }
    return ans;
};

  • 时间复杂度:O(n)O(n)

  • 空间复杂度:O(n)O(n)

通用「非递归」

另外一种「递归」转「迭代」的做法,是直接模拟系统执行「递归」的过程,这是一种更为通用的做法。

由于现代编译器已经做了很多关于递归的优化,现在这种技巧已经无须掌握。

在迭代过程中记录当前栈帧位置状态 loc,在每个状态流转节点做相应操作。

Java 代码:

class Solution {
    public List<Integer> postorder(Node root) {
        List<Integer> ans = new ArrayList<>();
        Deque<Object[]> d = new ArrayDeque<>();
        d.addLast(new Object[]{0, root});
        while (!d.isEmpty()) {
            Object[] poll = d.pollLast();
            Integer loc = (Integer)poll[0]; Node t = (Node)poll[1];
            if (t == null) continue;
            if (loc == 0) {
                d.addLast(new Object[]{1, t});
                int n = t.children.size();
                for (int i = n - 1; i >= 0; i--) d.addLast(new Object[]{0, t.children.get(i)});
            } else if (loc == 1) {
                ans.add(t.val);
            }
        }
        return ans;
    }
}

C++ 代码:

class Solution {
public:
    vector<int> postorder(Node* root) {
        vector<int> ans;
        stack<pair<int, Node*>> st;
        st.push({0, root});
        while (!st.empty()) {
            int loc = st.top().first;
            Node* t = st.top().second;
            st.pop();
            if (!t) continue;
            if (loc == 0) {
                st.push({1, t});
                for (int i = t->children.size() - 1; i >= 0; i--) {
                    st.push({0, t->children[i]});
                }
            } else if (loc == 1) {
                ans.push_back(t->val);
            }
        }
        return ans;
    }
};

Python 代码:

class Solution:
    def postorder(self, root: 'Node') -> List[int]:
        ans = []
        stack = [(0, root)]
        while stack:
            loc, t = stack.pop()
            if not t: continue
            if loc == 0:
                stack.append((1, t))
                for child in reversed(t.children):
                    stack.append((0, child))
            elif loc == 1:
                ans.append(t.val)
        return ans

TypeScript 代码:

function postorder(root: Node | null): number[] {
    const ans: number[] = [];
    const stack: [number, Node | null][] = [[0, root]];
    while (stack.length > 0) {
        const [loc, t] = stack.pop()!;
        if (!t) continue;
        if (loc === 0) {
            stack.push([1, t]);
            for (let i = t.children.length - 1; i >= 0; i--) {
                stack.push([0, t.children[i]]);
            }
        } else if (loc === 1) {
            ans.push(t.val);
        }
    }
    return ans;
};

  • 时间复杂度:O(n)O(n)

  • 空间复杂度:O(n)O(n)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Web面试那些事儿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值