《机器学习实战》学习笔记(一):k-近邻算法

一、简单KNN算法

1.1 k-近邻法简介

        k近邻法(k-nearest neighbor, k-NN)是1967年由Cover T和Hart P提出的一种基本分类与回归方法。它的工作原理是:存在一个样本数据集合,也称作为训练样本集,并且样本集中每个数据都存在标签,即我们知道样本集中每一个数据与所属分类的对应关系。输入没有标签的新数据后,将新的数据的每个特征与样本集中数据对应的特征进行比较,然后算法提取样本最相似数据(最近邻)的分类标签。一般来说,我们只选择样本数据集中前k个最相似的数据,这就是k-近邻算法中k的出处,通常k是不大于20的整数。最后,选择k个最相似数据中出现次数最多的分类,作为新数据的分类。

举个简单的例子,我们可以使用k-近邻算法分类一个电影是爱情片还是动作片。

电影名称打斗镜头接吻镜头电影类型
电影11101爱情片
电影2589爱情片
电影31085动作片
电影41158动作片

表1.1    每部电影的打斗镜头数、接吻镜头数以及电影类型

       表1.1就是我们已有的数据集合,也就是训练样本集。这个数据集有两个特征,即打斗镜头数和接吻镜头数。除此之外,我们也知道每个电影的所属类型,即分类标签。用肉眼粗略地观察,接吻镜头多的,是爱情片。打斗镜头多的,是动作片。以我们多年的看片经验,这个分类还算合理。如果现在给我一部电影,你告诉我这个电影打斗镜头数和接吻镜头数。不告诉我这个电影类型,我可以根据你给我的信息进行判断,这个电影是属于爱情片还是动作片。而k-近邻算法也可以像我们人一样做到这一点,不同的地方在于,我们的经验更"牛逼",而k-邻近算法是靠已有的数据。比如,你告诉我这个电影打斗镜头数为2,接吻镜头数为102,我的经验会告诉你这个是爱情片,k-近邻算法也会告诉你这个是爱情片。再比如又告诉我另一个电影打斗镜头数为49,接吻镜头数为51,以人为的主观判断,这既有可能是个爱情片,又有可能是个动作片,然而k-近邻算法并不会告诉我们这些,因为在该算法看来,电影类型只有爱情片和动作片,它会提取样本集中特征最相似数据(最邻近)的分类标签,得到的结果可能是爱情片,也可能是动作片。当然,这些取决于数据集的大小以及最近邻的判断标准等因素。

1.2 距离度量

       我们已经知道k-近邻算法根据特征比较,然后提取样本集中特征最相似数据(最邻近)的分类标签。那么,如何进行比较呢?比如,我们还是以表1.1为例,怎么判断红色圆点标记的电影所属的类别呢?如图1.1所示。
在这里插入图片描述
图1.1  电影分类

       我们可以从散点图大致推断,这个红色圆点标记的电影可能属于动作片,因为距离已知的那两个动作片的圆点更近。k-近邻算法用什么方法进行判断呢?没错,就是距离度量。这个电影分类的例子有2个特征,也就是在2维实数向量空间,可以使用我们高中学过的两点距离公式计算距离,如图1.2所示。

在这里插入图片描述
图1.2
通过计算,我们可以得到如下结果:

(101,20)->动作片(108,5)的距离约为16.55
(101,20)->动作片(115,8)的距离约为18.44
(101,20)->爱情片(5,89)的距离约为118.22
(101,20)->爱情片(1,101)的距离约为128.69
       通过计算可知,红色圆点标记的电影到动作片 (108,5)的距离最近,为16.55。如果算法直接根据这个结果,判断该红色圆点标记的电影为动作片,这个算法就是最近邻算法,而非k-近邻算法。那么k-邻近算法是什么呢?k-近邻算法步骤如下:

1.计算已知类别数据集中的点与当前点之间的距离;
2.按照距离递增次序排序;
3.选取与当前点距离最小的k个点;
4.确定前k个点所在类别的出现频率;
5.返回前k个点所出现频率最高的类别作为当前点的预测分类。
        比如,现在这个k值取3,那么在电影例子中,按距离依次排序的三个点分别是动作片(108,5)、动作片(115,8)、爱情片(5,89)。在这三个点中,动作片出现的频率为三分之二,爱情片出现的频率为三分之一,所以该红色圆点标记的电影为动作片。这个判别过程就是k-近邻算法。

1.3 Python代码实现KNN算法(以电影分类为例)

1.3.1 准备数据集

# -*- coding: UTF-8 -*-
import numpy as np

"""
函数说明:创建数据集

Parameters:
    无
Returns:
    group - 数据集
    labels - 分类标签
"""
def createDataSet():
    #四组二维特征
    group = np.array([[1,101],[5,89],[108,5],[115,8]])
    #四组特征的标签
    labels = ['爱情片','爱情片','动作片','动作片']
    return group, labels
if __name__ == '__main__':
    #创建数据集
    group, labels = createDataSet()
    #打印数据集
    print(group)
    print(labels)

运行结果:
在这里插入图片描述
图1.3

1.3.2 KNN算法

根据两点距离公式,计算距离,选择距离最小的前k个点,并返回分类结果。

# -*- coding: UTF-8 -*-
import numpy as np
import operator

"""
函数说明:kNN算法,分类器

Parameters:
    inX - 用于分类的数据(测试集)
    dataSet - 用于训练的数据(训练集)
    labes - 分类标签
    k - kNN算法参数,选择距离最小的k个点
Returns:
    sortedClassCount[0][0] - 分类结果
"""
def classify0(inX, dataSet, labels, k):
    #numpy函数shape[0]返回dataSet的行数
    dataSetSize = dataSet.shape[0]
    #在列向量方向上重复inX共1次(横向),行向量方向上重复inX共dataSetSize次(纵向)
    diffMat = np.tile(inX, (dataSetSize, 1)) - dataSet
    #二维特征相减后平方
    sqDiffMat = diffMat**2
    #sum()所有元素相加,sum(0)列相加,sum(1)行相加
    sqDistances = sqDiffMat.sum(axis=1)
    #开方,计算出距离
    distances = sqDistances**0.5
    #返回distances中元素从小到大排序后的索引值
    sortedDistIndices = distances.argsort()
    #定一个记录类别次数的字典
    classCount = {}
    for i in range(k):
        #取出前k个元素的类别
        voteIlabel = labels[sortedDistIndices[i]]
        #dict.get(key,default=None),字典的get()方法,返回指定键的值,如果值不在字典中返回默认值。
        #计算类别次数
        classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1
    #python3中用items()替换python2中的iteritems()
    #key=operator.itemgetter(1)根据字典的值进行排序
    #key=operator.itemgetter(0)根据字典的键进行排序
    #reverse降序排序字典
    sortedClassCount = sorted(classCount.items(),key=operator.itemgetter(1),reverse=True)
    #返回次数最多的类别,即所要分类的类别
    return sortedClassCount[0][0]

1.3.3 预测红色圆点标记的电影(101,20)的类别,K-NN的k值为3

# -*- coding: UTF-8 -*-
import numpy as np
import operator

"""
函数说明:创建数据集

Parameters:
    无
Returns:
    group - 数据集
    labels - 分类标签
"""
def createDataSet():
    #四组二维特征
    group = np.array([[1,101],[5,89],[108,5],[115,8]])
    #四组特征的标签
    labels = ['爱情片','爱情片','动作片','动作片']
    return group, labels

"""
函数说明:kNN算法,分类器

Parameters:
    inX - 用于分类的数据(测试集)
    dataSet - 用于训练的数据(训练集)
    labes - 分类标签
    k - kNN算法参数,选择距离最小的k个点
Returns:
    sortedClassCount[0][0] - 分类结果
"""
def classify0(inX, dataSet, labels, k):
    #numpy函数shape[0]返回dataSet的行数
    dataSetSize = dataSet.shape[0]
    #在列向量方向上重复inX共1次(横向),行向量方向上重复inX共dataSetSize次(纵向)
    diffMat = np.tile(inX, (dataSetSize, 1)) - dataSet
    #二维特征相减后平方
    sqDiffMat = diffMat**2
    #sum()所有元素相加,sum(0)列相加,sum(1)行相加
    sqDistances = sqDiffMat.sum(axis=1)
    #开方,计算出距离
    distances = sqDistances**0.5
    #返回distances中元素从小到大排序后的索引值
    sortedDistIndices = distances.argsort()
    #定一个记录类别次数的字典
    classCount = {}
    for i in range(k):
        #取出前k个元素的类别
        voteIlabel = labels[sortedDistIndices[i]]
        #dict.get(key,default=None),字典的get()方法,返回指定键的值,如果值不在字典中返回默认值。
        #计算类别次数
        classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1
    #python3中用items()替换python2中的iteritems()
    #key=operator.itemgetter(1)根据字典的值进行排序
    #key=operator.itemgetter(0)根据字典的键进行排序
    #reverse降序排序字典
    sortedClassCount = sorted(classCount.items(),key=operator.itemgetter(1),reverse=True)
    #返回次数最多的类别,即所要分类的类别
    return sortedClassCount[0][0]

if __name__ == '__main__':
    #创建数据集
    group, labels = createDataSet()
    #测试集
    test = [101,20]
    #kNN分类
    test_class = classify0(test, group, labels, 3)
    #打印分类结果
    print(test_class)

运行结果如下:

在这里插入图片描述
图1.4 运行结果

根据我们的主观经验判断,最终的分类结果是正确的。

二、再探KNN——一些学习思考

       学习了基本的KNN算法后,不难发现该电影例子中的特征是二维的,这样的距离度量可以用两点距离公式计算。但是如果是更高维的呢?查阅相关资料得知,可以用欧氏距离(欧几里德度量),如图2.1,图1.6所示我们高中所学的两点距离公式就是欧氏距离在二维空间上的公式,也就是欧氏距离的n的值为2的情况。

在这里插入图片描述
图2.1
在这里插入图片描述
图2.2

三、KNN-sklearn实现手写数字识别

3.1背景

   对于需要识别的数字已经使用图形处理软件,处理成具有相同的色彩和大小:宽高是32像素x32像素。尽管采用本文格式存储图像不能有效地利用内存空间,但是为了方便理解,我们将图片转换为文本格式,数字的文本格式如图3.1所示。
在这里插入图片描述
图3.1 数字示例

3.2 Sklearn实现

   由于数字图片是32x32的二进制图像,为了方便计算,我们可以将32x32的二进制图像转换为1x1024的向量。对于sklearn的KNeighborsClassifier输入可以是矩阵,不用一定转换为向量,不过为了跟自己写的k-近邻算法分类器对应上,这里也做了向量化处理。然后构建kNN分类器,利用分类器做预测。

# -*- coding: UTF-8 -*-
import numpy as np
import operator
from os import listdir
from sklearn.neighbors import KNeighborsClassifier as kNN

"""
函数说明:32x32的二进制图像转换为1x1024向量。

Parameters:
    filename - 文件名
Returns:
    returnVect - 返回的二进制图像的1x1024向量
"""
def img2vector(filename):
    #创建1x1024零向量
    returnVect = np.zeros((1, 1024))
    #打开文件
    fr = open(filename)
    #按行读取
    for i in range(32):
        #读一行数据
        lineStr = fr.readline()
        #每一行的前32个元素依次添加到returnVect中
        for j in range(32):
            returnVect[0, 32*i+j] = int(lineStr[j])
    #返回转换后的1x1024向量
    return returnVect

"""
函数说明:手写数字分类测试

Parameters:
    无
Returns:"""
def handwritingClassTest():
    #测试集的Labels
    hwLabels = []
    #返回trainingDigits目录下的文件名
    trainingFileList = listdir('trainingDigits')
    #返回文件夹下文件的个数
    m = len(trainingFileList)
    #初始化训练的Mat矩阵,测试集
    trainingMat = np.zeros((m, 1024))
    #从文件名中解析出训练集的类别
    for i in range(m):
        #获得文件的名字
        fileNameStr = trainingFileList[i]
        #获得分类的数字
        classNumber = int(fileNameStr.split('_')[0])
        #将获得的类别添加到hwLabels中
        hwLabels.append(classNumber)
        #将每一个文件的1x1024数据存储到trainingMat矩阵中
        trainingMat[i,:] = img2vector('trainingDigits/%s' % (fileNameStr))
    #构建kNN分类器
    neigh = kNN(n_neighbors = 3, algorithm = 'auto')
    #拟合模型, trainingMat为测试矩阵,hwLabels为对应的标签
    neigh.fit(trainingMat, hwLabels)
    #返回testDigits目录下的文件列表
    testFileList = listdir('testDigits')
    #错误检测计数
    errorCount = 0.0
    #测试数据的数量
    mTest = len(testFileList)
    #从文件中解析出测试集的类别并进行分类测试
    for i in range(mTest):
        #获得文件的名字
        fileNameStr = testFileList[i]
        #获得分类的数字
        classNumber = int(fileNameStr.split('_')[0])
        #获得测试集的1x1024向量,用于训练
        vectorUnderTest = img2vector('testDigits/%s' % (fileNameStr))
        #获得预测结果
        # classifierResult = classify0(vectorUnderTest, trainingMat, hwLabels, 3)
        classifierResult = neigh.predict(vectorUnderTest)
        print("分类返回结果为%d\t真实结果为%d" % (classifierResult, classNumber))
        if(classifierResult != classNumber):
            errorCount += 1.0
    print("总共错了%d个数据\n错误率为%f%%" % (errorCount, errorCount/mTest * 100))


"""
函数说明:main函数

Parameters:
    无
Returns:"""
if __name__ == '__main__':
    handwritingClassTest()

运行结果如图:

在这里插入图片描述
图3.2
   上述代码使用的algorithm参数是auto,更改algorithm参数为brute,经过使用暴力搜索后,发现,运行时间变长了,变为10s+。更改n_neighbors参数后发现,不同的值,检测精度也是不同的。经过自己尝试更改这些参数的设置,加深了对其函数的理解。

四、约会网站配对效果判定

4.1 背景

海伦女士一直使用在线约会网站寻找适合自己的约会对象。尽管约会网站会推荐不同的任选,但她并不是喜欢每一个人。经过一番总结,她发现自己交往过的人可以进行如下分类:

  • 不喜欢的人
  • 魅力一般的人
  • 极具魅力的人

海伦收集约会数据已经有了一段时间,她把这些数据存放在文本文件datingTestSet.txt中,每个样本数据占据一行,总共有1000行。
海伦收集的样本数据主要包含以下3种特征:

  • 每年获得的飞行常客里程数
  • 玩视频游戏所消耗时间百分比
  • 每周消费的冰淇淋公升数

数据格式如图4.1所示
在这里插入图片描述
图4.1

4.1 数据解析

在将上述特征数据输入到分类器前,必须将待处理的数据的格式改变为分类器可以接收的格式。分类器接收的数据是什么格式的?将数据分类两部分,即特征矩阵和对应的分类标签向量。

# -*- coding: UTF-8 -*-
import numpy as np
"""
函数说明:打开并解析文件,对数据进行分类:1代表不喜欢,2代表魅力一般,3代表极具魅力

Parameters:
    filename - 文件名
Returns:
    returnMat - 特征矩阵
    classLabelVector - 分类Label向量
"""
def file2matrix(filename):
    #打开文件
    fr = open(filename)
    #读取文件所有内容
    arrayOLines = fr.readlines()
    #得到文件行数
    numberOfLines = len(arrayOLines)
    #返回的NumPy矩阵,解析完成的数据:numberOfLines行,3列
    returnMat = np.zeros((numberOfLines,3))
    #返回的分类标签向量
    classLabelVector = []
    #行的索引值
    index = 0
    for line in arrayOLines:
        #s.strip(rm),当rm空时,默认删除空白符(包括'\n','\r','\t',' ')
        line = line.strip()
        #使用s.split(str="",num=string,cout(str))将字符串根据'\t'分隔符进行切片。
        listFromLine = line.split('\t')
        #将数据前三列提取出来,存放到returnMat的NumPy矩阵中,也就是特征矩阵
        returnMat[index,:] = listFromLine[0:3]
        #根据文本中标记的喜欢的程度进行分类,1代表不喜欢,2代表魅力一般,3代表极具魅力
        if listFromLine[-1] == 'didntLike':
            classLabelVector.append(1)
        elif listFromLine[-1] == 'smallDoses':
            classLabelVector.append(2)
        elif listFromLine[-1] == 'largeDoses':
            classLabelVector.append(3)
        index += 1
    return returnMat, classLabelVector


if __name__ == '__main__':
    #打开的文件名
    filename = "datingTestSet.txt"
    #打开并处理数据
    datingDataMat, datingLabels = file2matrix(filename)
    print(datingDataMat)
    print(datingLabels)

解析结果如图4.2所示
在这里插入图片描述
图4.2

4.3 分析数据

对数据进行可视化:

# -*- coding: UTF-8 -*-

from matplotlib.font_manager import FontProperties
import matplotlib.lines as mlines
import matplotlib.pyplot as plt
import numpy as np

"""
函数说明:打开并解析文件,对数据进行分类:1代表不喜欢,2代表魅力一般,3代表极具魅力

Parameters:
    filename - 文件名
Returns:
    returnMat - 特征矩阵
    classLabelVector - 分类Label向量
"""
def file2matrix(filename):
    #打开文件
    fr = open(filename)
    #读取文件所有内容
    arrayOLines = fr.readlines()
    #得到文件行数
    numberOfLines = len(arrayOLines)
    #返回的NumPy矩阵,解析完成的数据:numberOfLines行,3列
    returnMat = np.zeros((numberOfLines,3))
    #返回的分类标签向量
    classLabelVector = []
    #行的索引值
    index = 0
    for line in arrayOLines:
        #s.strip(rm),当rm空时,默认删除空白符(包括'\n','\r','\t',' ')
        line = line.strip()
        #使用s.split(str="",num=string,cout(str))将字符串根据'\t'分隔符进行切片。
        listFromLine = line.split('\t')
        #将数据前三列提取出来,存放到returnMat的NumPy矩阵中,也就是特征矩阵
        returnMat[index,:] = listFromLine[0:3]
        #根据文本中标记的喜欢的程度进行分类,1代表不喜欢,2代表魅力一般,3代表极具魅力
        if listFromLine[-1] == 'didntLike':
            classLabelVector.append(1)
        elif listFromLine[-1] == 'smallDoses':
            classLabelVector.append(2)
        elif listFromLine[-1] == 'largeDoses':
            classLabelVector.append(3)
        index += 1
    return returnMat, classLabelVector

"""
函数说明:可视化数据

Parameters:
    datingDataMat - 特征矩阵
    datingLabels - 分类Label
Returns:"""
def showdatas(datingDataMat, datingLabels):
    #设置汉字格式
    font = FontProperties(fname=r"c:\windows\fonts\simsun.ttc", size=14)
    #将fig画布分隔成11,不共享x轴和y轴,fig画布的大小为(13,8)
    #当nrow=2,nclos=2,代表fig画布被分为四个区域,axs[0][0]表示第一行第一个区域
    fig, axs = plt.subplots(nrows=2, ncols=2,sharex=False, sharey=False, figsize=(13,8))

    numberOfLabels = len(datingLabels)
    LabelsColors = []
    for i in datingLabels:
        if i == 1:
            LabelsColors.append('black')
        if i == 2:
            LabelsColors.append('orange')
        if i == 3:
            LabelsColors.append('red')
    #画出散点图,以datingDataMat矩阵的第一(飞行常客例程)、第二列(玩游戏)数据画散点数据,散点大小为15,透明度为0.5
    axs[0][0].scatter(x=datingDataMat[:,0], y=datingDataMat[:,1], color=LabelsColors,s=15, alpha=.5)
    #设置标题,x轴label,y轴label
    axs0_title_text = axs[0][0].set_title(u'每年获得的飞行常客里程数与玩视频游戏所消耗时间占比',FontProperties=font)
    axs0_xlabel_text = axs[0][0].set_xlabel(u'每年获得的飞行常客里程数',FontProperties=font)
    axs0_ylabel_text = axs[0][0].set_ylabel(u'玩视频游戏所消耗时间占',FontProperties=font)
    plt.setp(axs0_title_text, size=9, weight='bold', color='red') 
    plt.setp(axs0_xlabel_text, size=7, weight='bold', color='black') 
    plt.setp(axs0_ylabel_text, size=7, weight='bold', color='black')

    #画出散点图,以datingDataMat矩阵的第一(飞行常客例程)、第三列(冰激凌)数据画散点数据,散点大小为15,透明度为0.5
    axs[0][1].scatter(x=datingDataMat[:,0], y=datingDataMat[:,2], color=LabelsColors,s=15, alpha=.5)
    #设置标题,x轴label,y轴label
    axs1_title_text = axs[0][1].set_title(u'每年获得的飞行常客里程数与每周消费的冰激淋公升数',FontProperties=font)
    axs1_xlabel_text = axs[0][1].set_xlabel(u'每年获得的飞行常客里程数',FontProperties=font)
    axs1_ylabel_text = axs[0][1].set_ylabel(u'每周消费的冰激淋公升数',FontProperties=font)
    plt.setp(axs1_title_text, size=9, weight='bold', color='red') 
    plt.setp(axs1_xlabel_text, size=7, weight='bold', color='black') 
    plt.setp(axs1_ylabel_text, size=7, weight='bold', color='black')

    #画出散点图,以datingDataMat矩阵的第二(玩游戏)、第三列(冰激凌)数据画散点数据,散点大小为15,透明度为0.5
    axs[1][0].scatter(x=datingDataMat[:,1], y=datingDataMat[:,2], color=LabelsColors,s=15, alpha=.5)
    #设置标题,x轴label,y轴label
    axs2_title_text = axs[1][0].set_title(u'玩视频游戏所消耗时间占比与每周消费的冰激淋公升数',FontProperties=font)
    axs2_xlabel_text = axs[1][0].set_xlabel(u'玩视频游戏所消耗时间占比',FontProperties=font)
    axs2_ylabel_text = axs[1][0].set_ylabel(u'每周消费的冰激淋公升数',FontProperties=font)
    plt.setp(axs2_title_text, size=9, weight='bold', color='red') 
    plt.setp(axs2_xlabel_text, size=7, weight='bold', color='black') 
    plt.setp(axs2_ylabel_text, size=7, weight='bold', color='black')
    #设置图例
    didntLike = mlines.Line2D([], [], color='black', marker='.',
                      markersize=6, label='didntLike')
    smallDoses = mlines.Line2D([], [], color='orange', marker='.',
                      markersize=6, label='smallDoses')
    largeDoses = mlines.Line2D([], [], color='red', marker='.',
                      markersize=6, label='largeDoses')
    #添加图例
    axs[0][0].legend(handles=[didntLike,smallDoses,largeDoses])
    axs[0][1].legend(handles=[didntLike,smallDoses,largeDoses])
    axs[1][0].legend(handles=[didntLike,smallDoses,largeDoses])
    #显示图片
    plt.show()

"""
函数说明:main函数

Parameters:
    无
Returns:"""
if __name__ == '__main__':
    #打开的文件名
    filename = "datingTestSet.txt"
    #打开并处理数据
    datingDataMat, datingLabels = file2matrix(filename)
    showdatas(datingDataMat, datingLabels)

可视化结果如图4.3所示:
在这里插入图片描述
图4.3

4.4 准备数据——归一化

在处理这种不同取值范围的特征值时,我们通常采用的方法是将数值归一化,如将取值范围处理为0到1或者-1到1之间。下面的公式可以将任意取值范围的特征值转化为0到1区间内的值:

-newValue = (oldValue - min) / (max - min)

其中min和max分别是数据集中的最小特征值和最大特征值。虽然改变数值取值范围增加了分类器的复杂度,但为了得到准确结果,我们必须这样做。在kNN_test02.py文件中编写名为autoNorm的函数,用该函数自动将数据归一化。代码如下:

# -*- coding: UTF-8 -*-
import numpy as np

"""
函数说明:打开并解析文件,对数据进行分类:1代表不喜欢,2代表魅力一般,3代表极具魅力

Parameters:
    filename - 文件名
Returns:
    returnMat - 特征矩阵
    classLabelVector - 分类Label向量

"""
def file2matrix(filename):
    #打开文件
    fr = open(filename)
    #读取文件所有内容
    arrayOLines = fr.readlines()
    #得到文件行数
    numberOfLines = len(arrayOLines)
    #返回的NumPy矩阵,解析完成的数据:numberOfLines行,3列
    returnMat = np.zeros((numberOfLines,3))
    #返回的分类标签向量
    classLabelVector = []
    #行的索引值
    index = 0
    for line in arrayOLines:
        #s.strip(rm),当rm空时,默认删除空白符(包括'\n','\r','\t',' ')
        line = line.strip()
        #使用s.split(str="",num=string,cout(str))将字符串根据'\t'分隔符进行切片。
        listFromLine = line.split('\t')
        #将数据前三列提取出来,存放到returnMat的NumPy矩阵中,也就是特征矩阵
        returnMat[index,:] = listFromLine[0:3]
        #根据文本中标记的喜欢的程度进行分类,1代表不喜欢,2代表魅力一般,3代表极具魅力
        if listFromLine[-1] == 'didntLike':
            classLabelVector.append(1)
        elif listFromLine[-1] == 'smallDoses':
            classLabelVector.append(2)
        elif listFromLine[-1] == 'largeDoses':
            classLabelVector.append(3)
        index += 1
    return returnMat, classLabelVector

"""
函数说明:对数据进行归一化

Parameters:
    dataSet - 特征矩阵
Returns:
    normDataSet - 归一化后的特征矩阵
    ranges - 数据范围
    minVals - 数据最小值

"""
def autoNorm(dataSet):
    #获得数据的最小值
    minVals = dataSet.min(0)
    maxVals = dataSet.max(0)
    #最大值和最小值的范围
    ranges = maxVals - minVals
    #shape(dataSet)返回dataSet的矩阵行列数
    normDataSet = np.zeros(np.shape(dataSet))
    #返回dataSet的行数
    m = dataSet.shape[0]
    #原始值减去最小值
    normDataSet = dataSet - np.tile(minVals, (m, 1))
    #除以最大和最小值的差,得到归一化数据
    normDataSet = normDataSet / np.tile(ranges, (m, 1))
    #返回归一化数据结果,数据范围,最小值
    return normDataSet, ranges, minVals

"""
函数说明:main函数

Parameters:
    无
Returns:"""
if __name__ == '__main__':
    #打开的文件名
    filename = "datingTestSet.txt"
    #打开并处理数据
    datingDataMat, datingLabels = file2matrix(filename)
    normDataSet, ranges, minVals = autoNorm(datingDataMat)
    print(normDataSet)
    print(ranges)
    print(minVals)

归一化函数运行结果:
在这里插入图片描述
图4.4
通过对数据归一化,并且求出数据的取值范围和数据的最小值,这两个值是在分类的时候需要用到的,先将其求出来,完成了对数据的预处理。

4.5 测试算法

机器学习算法一个很重要的工作就是评估算法的正确率,通常我们只提供已有数据的90%作为训练样本来训练分类器,而使用其余的10%数据去测试分类器,检测分类器的正确率。需要注意的是,10%的测试数据应该是随机选择的,由于海伦提供的数据并没有按照特定目的来排序,所以可以随意选择10%数据而不影响其随机性。

# -*- coding: UTF-8 -*-
import numpy as np
import operator

"""
函数说明:kNN算法,分类器

Parameters:
   inX - 用于分类的数据(测试集)
   dataSet - 用于训练的数据(训练集)
   labes - 分类标签
   k - kNN算法参数,选择距离最小的k个点
Returns:
   sortedClassCount[0][0] - 分类结果
"""
def classify0(inX, dataSet, labels, k):
   #numpy函数shape[0]返回dataSet的行数
   dataSetSize = dataSet.shape[0]
   #在列向量方向上重复inX共1次(横向),行向量方向上重复inX共dataSetSize次(纵向)
   diffMat = np.tile(inX, (dataSetSize, 1)) - dataSet
   #二维特征相减后平方
   sqDiffMat = diffMat**2
   #sum()所有元素相加,sum(0)列相加,sum(1)行相加
   sqDistances = sqDiffMat.sum(axis=1)
   #开方,计算出距离
   distances = sqDistances**0.5
   #返回distances中元素从小到大排序后的索引值
   sortedDistIndices = distances.argsort()
   #定一个记录类别次数的字典
   classCount = {}
   for i in range(k):
       #取出前k个元素的类别
       voteIlabel = labels[sortedDistIndices[i]]
       #dict.get(key,default=None),字典的get()方法,返回指定键的值,如果值不在字典中返回默认值。
       #计算类别次数
       classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1
   #python3中用items()替换python2中的iteritems()
   #key=operator.itemgetter(1)根据字典的值进行排序
   #key=operator.itemgetter(0)根据字典的键进行排序
   #reverse降序排序字典
   sortedClassCount = sorted(classCount.items(),key=operator.itemgetter(1),reverse=True)
   #返回次数最多的类别,即所要分类的类别
   return sortedClassCount[0][0]

"""
函数说明:打开并解析文件,对数据进行分类:1代表不喜欢,2代表魅力一般,3代表极具魅力

Parameters:
   filename - 文件名
Returns:
   returnMat - 特征矩阵
   classLabelVector - 分类Label向量
"""
def file2matrix(filename):
   #打开文件
   fr = open(filename)
   #读取文件所有内容
   arrayOLines = fr.readlines()
   #得到文件行数
   numberOfLines = len(arrayOLines)
   #返回的NumPy矩阵,解析完成的数据:numberOfLines行,3列
   returnMat = np.zeros((numberOfLines,3))
   #返回的分类标签向量
   classLabelVector = []
   #行的索引值
   index = 0
   for line in arrayOLines:
       #s.strip(rm),当rm空时,默认删除空白符(包括'\n','\r','\t',' ')
       line = line.strip()
       #使用s.split(str="",num=string,cout(str))将字符串根据'\t'分隔符进行切片。
       listFromLine = line.split('\t')
       #将数据前三列提取出来,存放到returnMat的NumPy矩阵中,也就是特征矩阵
       returnMat[index,:] = listFromLine[0:3]
       #根据文本中标记的喜欢的程度进行分类,1代表不喜欢,2代表魅力一般,3代表极具魅力
       if listFromLine[-1] == 'didntLike':
           classLabelVector.append(1)
       elif listFromLine[-1] == 'smallDoses':
           classLabelVector.append(2)
       elif listFromLine[-1] == 'largeDoses':
           classLabelVector.append(3)
       index += 1
   return returnMat, classLabelVector

"""
函数说明:对数据进行归一化

Parameters:
   dataSet - 特征矩阵
Returns:
   normDataSet - 归一化后的特征矩阵
   ranges - 数据范围
   minVals - 数据最小值
"""
def autoNorm(dataSet):
   #获得数据的最小值
   minVals = dataSet.min(0)
   maxVals = dataSet.max(0)
   #最大值和最小值的范围
   ranges = maxVals - minVals
   #shape(dataSet)返回dataSet的矩阵行列数
   normDataSet = np.zeros(np.shape(dataSet))
   #返回dataSet的行数
   m = dataSet.shape[0]
   #原始值减去最小值
   normDataSet = dataSet - np.tile(minVals, (m, 1))
   #除以最大和最小值的差,得到归一化数据
   normDataSet = normDataSet / np.tile(ranges, (m, 1))
   #返回归一化数据结果,数据范围,最小值
   return normDataSet, ranges, minVals


"""
函数说明:分类器测试函数

Parameters:
   无
Returns:
   normDataSet - 归一化后的特征矩阵
   ranges - 数据范围
   minVals - 数据最小值
"""
def datingClassTest():
   #打开的文件名
   filename = "datingTestSet.txt"
   #将返回的特征矩阵和分类向量分别存储到datingDataMat和datingLabels中
   datingDataMat, datingLabels = file2matrix(filename)
   #取所有数据的百分之十
   hoRatio = 0.10
   #数据归一化,返回归一化后的矩阵,数据范围,数据最小值
   normMat, ranges, minVals = autoNorm(datingDataMat)
   #获得normMat的行数
   m = normMat.shape[0]
   #百分之十的测试数据的个数
   numTestVecs = int(m * hoRatio)
   #分类错误计数
   errorCount = 0.0

   for i in range(numTestVecs):
       #前numTestVecs个数据作为测试集,后m-numTestVecs个数据作为训练集
       classifierResult = classify0(normMat[i,:], normMat[numTestVecs:m,:],
           datingLabels[numTestVecs:m], 4)
       print("分类结果:%d\t真实类别:%d" % (classifierResult, datingLabels[i]))
       if classifierResult != datingLabels[i]:
           errorCount += 1.0
   print("错误率:%f%%" %(errorCount/float(numTestVecs)*100))

"""
函数说明:main函数

Parameters:
   无
Returns:"""
if __name__ == '__main__':
   datingClassTest()

运行结果:
在这里插入图片描述
图4.5

4.6 使用算法

我们可以给海伦一个小段程序,通过该程序海伦会在约会网站上找到某个人并输入他的信息。程序会给出她对男方喜欢程度的预测值。

# -*- coding: UTF-8 -*-

import numpy as np
import operator

"""
函数说明:kNN算法,分类器

Parameters:
   inX - 用于分类的数据(测试集)
   dataSet - 用于训练的数据(训练集)
   labes - 分类标签
   k - kNN算法参数,选择距离最小的k个点
Returns:
   sortedClassCount[0][0] - 分类结果
"""
def classify0(inX, dataSet, labels, k):
   #numpy函数shape[0]返回dataSet的行数
   dataSetSize = dataSet.shape[0]
   #在列向量方向上重复inX共1次(横向),行向量方向上重复inX共dataSetSize次(纵向)
   diffMat = np.tile(inX, (dataSetSize, 1)) - dataSet
   #二维特征相减后平方
   sqDiffMat = diffMat**2
   #sum()所有元素相加,sum(0)列相加,sum(1)行相加
   sqDistances = sqDiffMat.sum(axis=1)
   #开方,计算出距离
   distances = sqDistances**0.5
   #返回distances中元素从小到大排序后的索引值
   sortedDistIndices = distances.argsort()
   #定一个记录类别次数的字典
   classCount = {}
   for i in range(k):
       #取出前k个元素的类别
       voteIlabel = labels[sortedDistIndices[i]]
       #dict.get(key,default=None),字典的get()方法,返回指定键的值,如果值不在字典中返回默认值。
       #计算类别次数
       classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1
   #python3中用items()替换python2中的iteritems()
   #key=operator.itemgetter(1)根据字典的值进行排序
   #key=operator.itemgetter(0)根据字典的键进行排序
   #reverse降序排序字典
   sortedClassCount = sorted(classCount.items(),key=operator.itemgetter(1),reverse=True)
   #返回次数最多的类别,即所要分类的类别
   return sortedClassCount[0][0]


"""
函数说明:打开并解析文件,对数据进行分类:1代表不喜欢,2代表魅力一般,3代表极具魅力

Parameters:
   filename - 文件名
Returns:
   returnMat - 特征矩阵
   classLabelVector - 分类Label向量
"""
def file2matrix(filename):
   #打开文件
   fr = open(filename)
   #读取文件所有内容
   arrayOLines = fr.readlines()
   #得到文件行数
   numberOfLines = len(arrayOLines)
   #返回的NumPy矩阵,解析完成的数据:numberOfLines行,3列
   returnMat = np.zeros((numberOfLines,3))
   #返回的分类标签向量
   classLabelVector = []
   #行的索引值
   index = 0
   for line in arrayOLines:
       #s.strip(rm),当rm空时,默认删除空白符(包括'\n','\r','\t',' ')
       line = line.strip()
       #使用s.split(str="",num=string,cout(str))将字符串根据'\t'分隔符进行切片。
       listFromLine = line.split('\t')
       #将数据前三列提取出来,存放到returnMat的NumPy矩阵中,也就是特征矩阵
       returnMat[index,:] = listFromLine[0:3]
       #根据文本中标记的喜欢的程度进行分类,1代表不喜欢,2代表魅力一般,3代表极具魅力
       if listFromLine[-1] == 'didntLike':
           classLabelVector.append(1)
       elif listFromLine[-1] == 'smallDoses':
           classLabelVector.append(2)
       elif listFromLine[-1] == 'largeDoses':
           classLabelVector.append(3)
       index += 1
   return returnMat, classLabelVector

"""
函数说明:对数据进行归一化

Parameters:
   dataSet - 特征矩阵
Returns:
   normDataSet - 归一化后的特征矩阵
   ranges - 数据范围
   minVals - 数据最小值
"""
def autoNorm(dataSet):
   #获得数据的最小值
   minVals = dataSet.min(0)
   maxVals = dataSet.max(0)
   #最大值和最小值的范围
   ranges = maxVals - minVals
   #shape(dataSet)返回dataSet的矩阵行列数
   normDataSet = np.zeros(np.shape(dataSet))
   #返回dataSet的行数
   m = dataSet.shape[0]
   #原始值减去最小值
   normDataSet = dataSet - np.tile(minVals, (m, 1))
   #除以最大和最小值的差,得到归一化数据
   normDataSet = normDataSet / np.tile(ranges, (m, 1))
   #返回归一化数据结果,数据范围,最小值
   return normDataSet, ranges, minVals

"""
函数说明:通过输入一个人的三维特征,进行分类输出

Parameters:
   无
Returns:"""
def classifyPerson():
   #输出结果
   resultList = ['讨厌','有些喜欢','非常喜欢']
   #三维特征用户输入
   precentTats = float(input("玩视频游戏所耗时间百分比:"))
   ffMiles = float(input("每年获得的飞行常客里程数:"))
   iceCream = float(input("每周消费的冰激淋公升数:"))
   #打开的文件名
   filename = "datingTestSet.txt"
   #打开并处理数据
   datingDataMat, datingLabels = file2matrix(filename)
   #训练集归一化
   normMat, ranges, minVals = autoNorm(datingDataMat)
   #生成NumPy数组,测试集
   inArr = np.array([precentTats, ffMiles, iceCream])
   #测试集归一化
   norminArr = (inArr - minVals) / ranges
   #返回分类结果
   classifierResult = classify0(norminArr, normMat, datingLabels, 3)
   #打印结果
   print("你可能%s这个人" % (resultList[classifierResult-1]))

"""
函数说明:main函数

Parameters:
   无
Returns:"""
if __name__ == '__main__':
   classifyPerson()

五、总结及学习心得

5.1 KNN算法的优缺点

优点:

1.简单好用,容易理解,精度高,理论成熟,既可以用来做分类也可以用来做回归;
2.可用于数值型数据和离散型数据;
3.训练时间复杂度为O(n);无数据输入假定;
4.对异常值不敏感。

缺点:

1.计算复杂性高;空间复杂性高;
2.样本不平衡问题(即有些类别的样本数量很多,而其它样本的数量很少);
3.一般数值很大的时候不用这个,计算量太大。但是单个样本又不能太少,否则容易发生误分。
4.最大的缺点是无法给出数据的内在含义。

5.2关于其他度量

关于距离度量的方法还有切比雪夫距离、马氏距离、巴氏距离等。
如有错误,还望指正,谢谢!

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值