//个人学习记录,如有错误请指正
//大部分图片公式来源于《hand on machine learning with scikit-learn and tensorflow》
//部分公式来源于互联网
决策树是一种偏向分类的技术,但是它同时也可以用来进行回归。
预测函数
我们都知道二叉树,那决策树实际上就与二叉树类似,我们的模型在形态上是一颗二叉树,树的每个内部节点都会根据个特征对数据集进行划分,例如特征值满足特定标准的进入左子树,不满足的进入右子树,这样从根开始,整个数据集就不断被划分为小数据集,直到叶结点,每个叶结点都会指定一个特定的预测值,这就是所谓的决策树模型,它非常直观,且容易理解。
优化函数
因为我们会在在叶结点上给予特定的预测,所以我们期望被分配到特定叶结点的实例都具有相同的真实值。也就是说,当每一个节点对数据集根据特征值进行划分时,我们希望被划分出来的两部分在被预测值上都尽量“纯净”,这样我们的预测才最有效。因此首先我们需要对