深度学习--GPU环境准备


一、现有环境

笔记本:联想14pro(含雷电4接口)
电脑系统:Windows 11
语言环境:python 3.8.6
编译器:pycharm2020.2.3
深度学习环境:TensorFlow 2.10.1
显卡:NVIDIA GeForce RTX 4070

二、显卡驱动安装

1.显卡接上笔记本

将显卡装入外置显卡扩展坞
连接笔记本雷电接口

2.下载GeForce Experience

GeForce Experience可以自动识别显卡,支持并下载更新对应显卡驱动
GeForce Experience下载地址: https://www.nvidia.com/zh-tw/geforce/geforce-experience/download/
在这里插入图片描述

三、GPU环境安装

1.下载cuda

cuda下载地址:https://developer.nvidia.com/cuda-toolkit-archive
tensorflow库在2.11及以上的版本中,都取消了对Windows平台的GPU支持,因此本机安装的tensorflow版本为2.10.1,tensorflow与cuda版本需要版本匹配,查看tensorflow2.10.1对应cuda11.2版,因此我这里下载的版本为11.2.0版。
tenserflow与cuda版本对应查找链接:https://tensorflow.google.cn/install/source_windows?hl=en#gpu
根据需要下载对应版本。在这里插入图片描述在这里插入图片描述
在这里插入图片描述

2.下载cudnn

cndnn下载地址:https://developer.nvidia.com/rdp/cudnn-download
网页加载有点缓慢,请耐心等待。
如果没有cuDNN账号,则需要注册
在这里插入图片描述
注册完成以后进入如下界面,选择相应的cuda版本下载cuDNN版本
![在这里插入图片描述](https://img-blog.csdnimg.cn/direct/52acbc0132164c84a6042d84b880c564.pn

3.安装cuda

根据安装提示一步步安装
检查环境是否含有环境变量,桌面上找到我的电脑,右键点击属性,如下:

现在需要重启电脑,然后Win+R进入cmd界面,输入nvcc -V,出现如下界面,代码cuda已经安装成功了。 注:必须要重启电脑,否则运行nvcc -V 会找不到命令。

4.安装cudnn

对下载的cuDNN压缩包解压后出现如下三个文件夹
在这里插入图片描述
然后找到cuda的安装路径,我的安装路径如下:

C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.2
将cuDNN压缩包解压后的三个文件夹拷贝到cuda的安装路径合并
为cuDNN添加环境变量:
找到环境变量-系统变量-path,分别将如下三个变量添加进去,完成安装。
在这里插入图片描述
验证cudnn是否安装成功
打开cmd

cd C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.2\extras\demo_suite

执行deviceQuery.exe,出现以下界面
在这里插入图片描述
执行bandwidthTest.exe,出现以下界面
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.2\extras\demo_suite

四、python代码验证gpu

检查GPU是否可用

print(tf.test.is_built_with_cuda())
gpus = tf.config.list_physical_devices("GPU")
print(gpus)

执行结果

True
[PhysicalDevice(name='/physical_device:GPU:0', device_type='GPU')]

五、tensorflow安装

tensorflow库在2.11及以上的版本中,都取消了对Windows平台的GPU支持,如果此时已经装了2.11及以上版本的tensorflow库,那么可以首先通过如下的代码将tensorflow库更换为2.10版本的(执行这一代码时,将自动删除原有的2.11及以上版本的tensorflow库),未曾安装则会直接安装2.10版本。(添加豆瓣镜像防止出现下载超时失败现象)

pip install --user "tensorflow<2.11" -i http://pypi.douban.com/simple/ --trusted-host pypi.douban.com

六、pytorch安装

pytorch官网下载对应版本,因为cuda版本为11.2,现在又要配置torch环境,查看torch官网后发现没有cuda11.2版本对应的torch下载。
考虑到版本向下兼容,可能不一定非要下载cuda=11.2对应的那个版本的torch,或许低于这个版本就可以。所以我就选择下载cuda11.1的版本。可进入pytorch历史版本页面下载对应版本。
如果版本安装错误,先卸载。

pip uninstall torch

在这里插入图片描述

在这里插入图片描述
复制对应命令进行安装。
在这里插入图片描述
出现报错,主要是因为对于torchvision,torchvision0.11.0/cu111这个版本是没有win环境下的安装包的,找好torch和torchvision对应好的都在契合win的系统架构的安装包,再执行相关的安装指令就能解决了。
torch1.9.1+cu111 torchvision0.10.1+cu111
手动下载安装包速度要快一些。
在这里插入图片描述
在这里插入图片描述

然后进入whl文件存放目录,选用以下版本安装命令

pip install torch-1.9.1+cu111-cp38-cp38-win_amd64.whl
pip install torchvision-0.10.1+cu111-cp38-cp38-win_amd64.whl

安装完成后,python环境下运行以下代码验证安装是否成功。

import torch
print(torch.cuda.is_available())
print(torch.__version__)
import torchvision
print(torchvision.__version__)

结果如下

True
1.9.1+cu111
0.10.1+cu111

之前用镜像安装出现torch.cuda.is_available()为false,torch版本后面跟的是+cpu,说明是cpu版本,那是因为镜像里面没有gpu版

参考链接:全网最新最全的基于Tensorflow和PyTorch深度学习环境安装教程

好了,环境安装完毕,就可以尽情地玩深度学习啦

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值