文章目录
一、现有环境
笔记本:联想14pro(含雷电4接口)
电脑系统:Windows 11
语言环境:python 3.8.6
编译器:pycharm2020.2.3
深度学习环境:TensorFlow 2.10.1
显卡:NVIDIA GeForce RTX 4070
二、显卡驱动安装
1.显卡接上笔记本
将显卡装入外置显卡扩展坞
连接笔记本雷电接口
2.下载GeForce Experience
GeForce Experience可以自动识别显卡,支持并下载更新对应显卡驱动
GeForce Experience下载地址: https://www.nvidia.com/zh-tw/geforce/geforce-experience/download/
三、GPU环境安装
1.下载cuda
cuda下载地址:https://developer.nvidia.com/cuda-toolkit-archive
tensorflow库在2.11及以上的版本中,都取消了对Windows平台的GPU支持,因此本机安装的tensorflow版本为2.10.1,tensorflow与cuda版本需要版本匹配,查看tensorflow2.10.1对应cuda11.2版,因此我这里下载的版本为11.2.0版。
tenserflow与cuda版本对应查找链接:https://tensorflow.google.cn/install/source_windows?hl=en#gpu
根据需要下载对应版本。
2.下载cudnn
cndnn下载地址:https://developer.nvidia.com/rdp/cudnn-download
网页加载有点缓慢,请耐心等待。
如果没有cuDNN账号,则需要注册
注册完成以后进入如下界面,选择相应的cuda版本下载cuDNN版本
3.安装cuda
根据安装提示一步步安装
检查环境是否含有环境变量,桌面上找到我的电脑,右键点击属性,如下:





4.安装cudnn
对下载的cuDNN压缩包解压后出现如下三个文件夹
然后找到cuda的安装路径,我的安装路径如下:
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.2
将cuDNN压缩包解压后的三个文件夹拷贝到cuda的安装路径合并
为cuDNN添加环境变量:
找到环境变量-系统变量-path,分别将如下三个变量添加进去,完成安装。
验证cudnn是否安装成功
打开cmd
cd C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.2\extras\demo_suite
执行deviceQuery.exe,出现以下界面
执行bandwidthTest.exe,出现以下界面
四、python代码验证gpu
检查GPU是否可用
print(tf.test.is_built_with_cuda())
gpus = tf.config.list_physical_devices("GPU")
print(gpus)
执行结果
True
[PhysicalDevice(name='/physical_device:GPU:0', device_type='GPU')]
五、tensorflow安装
tensorflow库在2.11及以上的版本中,都取消了对Windows平台的GPU支持,如果此时已经装了2.11及以上版本的tensorflow库,那么可以首先通过如下的代码将tensorflow库更换为2.10版本的(执行这一代码时,将自动删除原有的2.11及以上版本的tensorflow库),未曾安装则会直接安装2.10版本。(添加豆瓣镜像防止出现下载超时失败现象)
pip install --user "tensorflow<2.11" -i http://pypi.douban.com/simple/ --trusted-host pypi.douban.com
六、pytorch安装
pytorch官网下载对应版本,因为cuda版本为11.2,现在又要配置torch环境,查看torch官网后发现没有cuda11.2版本对应的torch下载。
考虑到版本向下兼容,可能不一定非要下载cuda=11.2对应的那个版本的torch,或许低于这个版本就可以。所以我就选择下载cuda11.1的版本。可进入pytorch历史版本页面下载对应版本。
如果版本安装错误,先卸载。
pip uninstall torch
复制对应命令进行安装。
出现报错,主要是因为对于torchvision,torchvision0.11.0/cu111这个版本是没有win环境下的安装包的,找好torch和torchvision对应好的都在契合win的系统架构的安装包,再执行相关的安装指令就能解决了。
torch1.9.1+cu111 torchvision0.10.1+cu111
手动下载安装包速度要快一些。
然后进入whl文件存放目录,选用以下版本安装命令
pip install torch-1.9.1+cu111-cp38-cp38-win_amd64.whl
pip install torchvision-0.10.1+cu111-cp38-cp38-win_amd64.whl
安装完成后,python环境下运行以下代码验证安装是否成功。
import torch
print(torch.cuda.is_available())
print(torch.__version__)
import torchvision
print(torchvision.__version__)
结果如下
True
1.9.1+cu111
0.10.1+cu111
之前用镜像安装出现torch.cuda.is_available()为false,torch版本后面跟的是+cpu,说明是cpu版本,那是因为镜像里面没有gpu版
参考链接:全网最新最全的基于Tensorflow和PyTorch深度学习环境安装教程
好了,环境安装完毕,就可以尽情地玩深度学习啦