分类工作基本完成

1021

目前暂时分为一下几类

    programm
     {
     import
     Algorithms
     Web
      program
     python
     c/c++
     c#
     java 
     mobile development include andriod and ios
     program news
     program work
     others
     database
     }

1204

去除碎片信息来源,也减少对信息的收集,信息的处理能力暂时欠缺

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
目标检测(Object Detection)是计算机视觉领域的一个核心问题,其主要任务是找出图像中所有感兴趣的目标(物体),并确定它们的类别和位置。以下是对目标检测的详细阐述: 一、基本概念 目标检测的任务是解决“在哪里?是什么?”的问题,即定位出图像中目标的位置并识别出目标的类别。由于各类物体具有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具挑战性的任务之一。 二、核心问题 目标检测涉及以下几个核心问题: 分类问题:判断图像中的目标属于哪个类别。 定位问题:确定目标在图像中的具体位置。 大小问题:目标可能具有不同的大小。 形状问题:目标可能具有不同的形状。 三、算法分类 基于深度学习的目标检测算法主要分为两大类: Two-stage算法:先进行区域生成(Region Proposal),生成有可能包含待检物体的预选框(Region Proposal),再通过卷积神经网络进行样本分类。常见的Two-stage算法包括R-CNN、Fast R-CNN、Faster R-CNN等。 One-stage算法:不用生成区域提议,直接在网络中提取特征来预测物体分类和位置。常见的One-stage算法包括YOLO系列(YOLOv1、YOLOv2、YOLOv3、YOLOv4、YOLOv5等)、SSD和RetinaNet等。 四、算法原理 以YOLO系列为例,YOLO将目标检测视为回归问题,将输入图像一次性划分为多个区域,直接在输出层预测边界框和类别概率。YOLO采用卷积网络来提取特征,使用全连接层来得到预测值。其网络结构通常包含多个卷积层和全连接层,通过卷积层提取图像特征,通过全连接层输出预测结果。 五、应用领域 目标检测技术已经广泛应用于各个领域,为人们的生活带来了极大的便利。以下是一些主要的应用领域: 安全监控:在商场、银行
逻辑回归是一种常用的分类算法,其基本原理如下: 1. 假设函数:逻辑回归假设类别之间的决策边界是一个线性函数,通过将输入特征与权重进行线性组合,并加上一个偏置项,得到一个预测值。 2. Sigmoid函数:为了将线性函数的输出映射到一个概率值(0到1之间),逻辑回归使用了Sigmoid函数(也称为逻辑函数)。Sigmoid函数的表达式为:h(x) = 1 / (1 + e^(-z)),其中z表示线性函数的输出。 3. 损失函数:逻辑回归使用对数损失函数(也称为交叉熵损失函数)来衡量预测值与真实标签之间的差异。对数损失函数的表达式为:J(w) = -1/m * Σ(y*log(h(x)) + (1-y)*log(1-h(x))),其中y表示真实标签,h(x)表示预测值。 4. 参数优化:逻辑回归使用梯度下降法来最小化损失函数。梯度下降法通过计算损失函数对参数的偏导数来更新参数,使得损失函数逐步减小。 5. 预测:在训练阶段完成参数优化后,可以使用学习到的参数来进行预测。将输入特征代入假设函数中,通过Sigmoid函数将输出映射到概率值,若概率大于或等于某个阈值,则将样本分为正类,否则分为负类。 总结起来,逻辑回归通过线性函数和Sigmoid函数将输入特征映射到概率值,使用对数损失函数衡量预测值与真实标签之间的差异,并通过梯度下降法最小化损失函数。最终通过设定阈值进行分类预测。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值