UNet变体

本文综述了多种U-Net的变体在医学图像分割任务中的应用,包括UNet++, MDU-Net, DUNet, RA-UNet等,强调了这些变体如何通过改进特征融合、深度监督和注意力机制来提高分割性能。各变体在网络结构、多尺度信息处理和上下文信息捕获方面展示了创新设计。" 136858200,8532953,CANTP帧格式详解:单帧/首帧/流控帧/连续帧,"['mcu', '架构', '通信协议']
摘要由CSDN通过智能技术生成

一、《U-Net: Convolutional Networks for Biomedical Image Segmentation》
在这里插入图片描述
二、《UNet++: A Nested U-Net Architecture for Medical Image Segmentation》
在这里插入图片描述
图1:(a)UNet ++由编码器和解码器组成,它们通过一系列嵌套的密集卷积块连接。 UNet ++背后的主要思想是在融合之前弥合编码器和解码器的特征图之间的语义鸿沟。 例如,(X0; 0,X1; 3)之间的语义鸿沟是使用具有三个卷积层的密集卷积块来弥合的。 在图形摘要中,黑色表示原始的U-Net,绿色和蓝色表示跳过路径上的密集卷积块,红色表示深度监控。红色,绿色和蓝色组件将UNet ++与U-Net区别开来。 (b)详细分析UNet ++的第一个跳过途径。 (c)如果在深入的监督下进行培训,则可以在推理时修剪UNet ++。
三、《MDU-Net: Multi-scale Densely Connected U-Net for biomedical image segmentation》
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
四、《DUNet: A deformable network for retinal vessel segmentation》
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
五、《RA-UNet: A hybrid deep attention-aware network to extract liver and tumor in CT scans》
在这里插入图片描述
在这里插入图片描述
6、《Dense Multi-path U-Net for Ischemic Stroke Lesion Segmentation in Multiple Image Modalities》
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
7、《Stacked Dense U-Nets with Dual Transformers for Robust Face Alignment》

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值