一、《U-Net: Convolutional Networks for Biomedical Image Segmentation》
二、《UNet++: A Nested U-Net Architecture for Medical Image Segmentation》
图1:(a)UNet ++由编码器和解码器组成,它们通过一系列嵌套的密集卷积块连接。 UNet ++背后的主要思想是在融合之前弥合编码器和解码器的特征图之间的语义鸿沟。 例如,(X0; 0,X1; 3)之间的语义鸿沟是使用具有三个卷积层的密集卷积块来弥合的。 在图形摘要中,黑色表示原始的U-Net,绿色和蓝色表示跳过路径上的密集卷积块,红色表示深度监控。红色,绿色和蓝色组件将UNet ++与U-Net区别开来。 (b)详细分析UNet ++的第一个跳过途径。 (c)如果在深入的监督下进行培训,则可以在推理时修剪UNet ++。
三、《MDU-Net: Multi-scale Densely Connected U-Net for biomedical image segmentation》
四、《DUNet: A deformable network for retinal vessel segmentation》
五、《RA-UNet: A hybrid deep attention-aware network to extract liver and tumor in CT scans》
6、《Dense Multi-path U-Net for Ischemic Stroke Lesion Segmentation in Multiple Image Modalities》
7、《Stacked Dense U-Nets with Dual Transformers for Robust Face Alignment》
UNet变体
最新推荐文章于 2024-09-25 11:05:20 发布
本文综述了多种U-Net的变体在医学图像分割任务中的应用,包括UNet++, MDU-Net, DUNet, RA-UNet等,强调了这些变体如何通过改进特征融合、深度监督和注意力机制来提高分割性能。各变体在网络结构、多尺度信息处理和上下文信息捕获方面展示了创新设计。"
136858200,8532953,CANTP帧格式详解:单帧/首帧/流控帧/连续帧,"['mcu', '架构', '通信协议']
摘要由CSDN通过智能技术生成