数据可视化笔记7 网络数据可视化

本文探讨了网络数据的概念,重点介绍了网络数据可视化的节点-链接法,包括社交网络的几何特征如中心度、度中心度等。此外,还讨论了社区发现算法,如基于聚类和模块度的算法,并提到了各种网络布局策略,如随机布局、力导向布局。网络数据可视化的目的是揭示隐藏的结构和模式,帮助理解复杂的关系网络。
摘要由CSDN通过智能技术生成

概括
网络数据的概念
网络数据可视化的节点—链接法
√社交网络的几何特征:中心度、度中心度、介数中心度、临近中心度、特征向量中心度、平均路径长度、集聚系数、模块度
√社交网络的布局:随机布局、圆形布局、力导向布局、地理空间布局
√社区发现:社区发现、重叠社区和非重叠社区
√社区发现算法:基于聚类的算法、基于模块的算法
√节点-链接法图的简化
网络数据可视化的相邻矩阵法

网络数据概念

-网络数据
有时也称作图数据,由节点(nodes)和边(edges)构成,用来描述实体间关系的一种结构
非线性结构
实体:人、事、物
例如:人与人之间的关系、城市之间的道路连接、科研论文之间的引用都组成了网络
-网络数据可视化常用方法有两种
节点—链接法
相邻矩阵法

在这里插入图片描述

网络数据可视化—节点—链接法

节点—链接法:节点表示对象,边表示节点之间的关系
如果图的每条边有方向,则称为有向图(directed graph),如微博的关注就是有向的
如果图的每条边没有方向,则称为无向图(undirected graph),如微信好友就是无向的
优点:最自然直接的表达方式,易于理解、接受

在这里插入图片描述

– 图 G 由一个顶点(或节点)集合 V 和一个边集合 E 组成
– 每条边exy=(x, y)连接图G 的两个顶点x, y
– 例如:V={1,2,3,4}, E={(1,2),(1,3),(2,3),(3,4),(4,1)}
– 连接顶点的边的个数成为该顶点的度
在这里插入图片描述
度– 连接顶点的边的个数成为该顶点的度。
有向图与无向图的中心度的区别
对于无向图,中心度不带有方向性
对于有向图,根据其边的方向分为入度和出度,入度是指向该节点的相邻节点数量,而出度是由该节点出发的相连节点数量
在这里插入图片描述
在这里插入图片描述
实例
在这里插入图片描述
社交网络
由一组社交行为者(例如个人或组织)、行为者之间的二元关系集以及其他社交互动组成的社交结构
社交网络视角提供了一套分析整个社会实体结构的方法,并且用于解释在这些结构中观察到的各种模式
与其他复杂网络一起构成了网络科学新兴领域的一部分

社交网络分析(Social Network Analysis, SNA)
通过网络分析和图论研究社会实体结构之间关系的方法
一个跨学科学术领域,涉及社会心理学,社会学,统计学和图论等
社交网络的几何特征

中心度(Centrality)
指一组度量,用来量化网络中特定节点(或节点组)的重要性或影响力

度中心度(Degree centrality)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值