看到很多的对CNN的改造的文章中都是对pool做东西,最近看到一个随机池化,就好奇的去看了一下
可以参看这篇文章 Stochastic Pooling for Regularization of Deep Convolutional Neural Networks
在caffe中是支持最大池化,均值池化,随机池化的
在使用中常见的是mean-pooling和max-pooling,下面就简单介绍一下stochastic pooling
stochastic pooling方法非常简单,只需对feature map中的元素按照其概率值大小随机选择,即元素值大的被选中的概率也大。而不像max-pooling那样,永远只取那个最大值元素。
假设feature map中的pooling区域元素值如下:
3*3大小的,元素值和sum=0+1.1+2.5+0.9+2.0+1.0+0+1.5+1.0=10
方格中的元素同时除以sum后得到的矩阵元素为:
每个元素值表示对应位置处值的概率,现在只需要按照该概率来随机选一个,方法是:将其看作是9个变量的多项式分布,然后对该多项式分布采样即可,theano中有直接的multinomial()来函数完成。当然也可以自己用01均匀分布来采样,将单位长度1按照那9个概率值分成9个区间(概率越大,覆盖的区域越长,每个区间对应一个位置),然随机生成一个数后看它落在哪个区间。
比如如果随机采样后的矩阵为:
则这时候的poolng值为1.5
使用stochastic pooling时(即test过程),其推理过程也很简单,对矩阵区域求加权平均即可。比如对上面的例子求值过程为为:
0*0+1.1*0.11+2.5*0.25+0.9*0.09+2.0*0.2+1.0*0.1+0*0+1.5*0.15+1.0*0.1=1.625 说明此时对小矩形pooling后的结果为1.625.
在反向传播求导时,只需保留前向传播已经记录被选中节点的位置的值,其它值都为0,这和max-pooling的反向传播非常类似。
下面是原文中给出的一个整体的计算的图
在计算时的时候train计算主要是进行随机采样的方式进行计算,在test时主要是使用概率进行计算的选取哪一个,是均值池化和最大池化的一个中间
区域吧。
Stochastic pooling优点:
方法简单;
泛化能力更强;
可用于卷积层(文章中是与Dropout和DropConnect对比的,说是Dropout和DropConnect不太适合于卷积层. 不过个人感觉这没什么可比性,因为它们在网络中所处理的结构不同)。