线性代数基础知识点复习

1. Determinant

逆序数与行列式计算

∣ A n × n ∣ = ∑ 1 , 2 , ⋯   , n ( − 1 ) τ ( j 1 j 2 ⋯ j n ) a 1 j 1 a 1 j 2 ⋯ a 1 j n \left| A_{n\times n} \right|=\sum_{1,2,\cdots,n}(-1)^{\tau (j_1j_2\cdots j_n)}a_{1j_1}a_{1j_2}\cdots a_{1j_n} An×n=1,2,,n(1)τ(j1j2jn)a1j1a1j2a1jn

范德蒙行列式

∣ 1 1 ⋯ 1 x 1 x 2 ⋯ x n x 1 2 x 2 2 ⋯ x n 2 ⋮ ⋮ ⋮ x 1 n − 1 x 2 n − 1 ⋯ x n n − 1 ∣ = ∏ 1 ⩽ i < j ⩽ n ( x j − x i ) \left| \begin{array}{llll} 1 & 1 & \cdots & 1 \\ x_1 & x_2 & \cdots & x_n \\ x_1^2 & x_2^2 & \cdots & x_n^2 \\ \vdots & \vdots & & \vdots \\ x_1^{n-1} & x_2^{n-1} & \cdots & x_n^{n-1}\end{array}\right|=\prod_{1\leqslant i<j\leqslant n}(x_j-x_i) 1x1x12x1n11x2x22x2n11xnxn2xnn1 =1i<jn(xjxi)

爪形行列式

D n + 1 = ∣ a 0 b 1 b 2 ⋯ b n c 1 a 1 c 2 a 2 ⋮ ⋱ c n a n ∣ = ( a 0 − ∑ i = 1 n b i c i a i ) a 1 a 2 ⋯ a n ( n ⩾ 1 ) D_{n+1}=\left| \begin{array}{llll} a_0 & b_1 & b_2 & \cdots & b_n \\ c_1 & a_1 \\ c_2 & & a_2 \\ \vdots &&& \ddots\\c_n &&&&a_n\end{array}\right|=(a_0-\sum_{i=1}^n\frac{b_ic_i}{a_i})a_1a_2\cdots a_n(n \geqslant 1) Dn+1= a0c1c2cnb1a1b2a2bnan =(a0i=1naibici)a1a2an(n1)

三对角行列式

D n = ∣ a b c a b c a ⋱ ⋱ ⋱ b c a ∣ = a D n − 1 − b c D n − 2 ( n > 2 ) ⇓ x 2 − a x + b c = 0 D n = { x 2 n + 1 − x 1 n + 1 x 2 − x 1 , x 1 ≠ x 2 ( n + 1 ) x 1 n + 1 , x 1 = x 2 D_n=\left| \begin{array}{ccccc} a&b\\c&a&b\\&c&a&\ddots\\&&\ddots&\ddots&b\\&&&c&a\end{array}\right| =aD_{n-1}-bcD_{n-2}(n>2) \\\Downarrow\\ x^2-ax+bc=0\\ D_n=\left\{ \begin{array}{cc} \displaystyle\frac{x_2^{n+1}-x_1^{n+1}}{x_2-x_1},x_1\neq x2\\(n+1)x_1^{n+1}, x_1=x_2\end{array}\right. Dn= acbacbacba =aDn1bcDn2(n>2)x2ax+bc=0Dn= x2x1x2n+1x1n+1,x1=x2(n+1)x1n+1,x1=x2

2. matrix

2.1 concepts

  • 同型矩阵&相等矩阵
  • 特殊矩阵
    • 转置矩阵
    • 单位矩阵 I 或 E I或E IE
    • 对角矩阵 主对角线以外的元素都为0,记为 d i a g ( a 1 , a 2 , ⋯   , a n ) diag(a_1,a_2,\cdots,a_n) diag(a1,a2,,an)
    • { 对称矩阵 ⇐ A T = A 反对称矩阵 ⇐ A T = − A \left\{ \begin{array}{ll} \textbf{对称矩阵}\Leftarrow A^T=A\\\textbf{反对称矩阵}\Leftarrow A^T=-A\end{array}\right. {对称矩阵AT=A反对称矩阵AT=A
    • 正交矩阵 ⇐ A A T = A T A = I \Leftarrow AA^T=A^TA=I AAT=ATA=I (各列向量为单位向量且两两正交,一定可以对角化)
    • 幂等矩阵 ⇐ A 2 = A \Leftarrow A^2=A A2=A
    • 伴随矩阵 ⇐ A ∗ = [ A 11 A 21 ⋯ A n 1 A 12 A 22 ⋯ A n 2 ⋮ ⋮ ⋮ A 1 n A 2 n ⋯ A n n ] \Leftarrow A^*=\left[ \begin{array}{cccc} A_{11}&A_{21}&\cdots&A_{n1}\\A_{12}&A_{22}&\cdots&A_{n2}\\\vdots&\vdots&&\vdots\\A_{1n}&A_{2n}&\cdots&A_{nn}\end{array} \right] A= A11A12A1nA21A22A2nAn1An2Ann , 即每一项取代数余子式再整体转置

2.2 operations

  • 加减

  • 数乘

  • 矩阵乘法

  • 转置矩阵性质

    • ( A B ) T = B T A T ( A 1 A 2 ⋯ A n ) T = A n T A n − 1 T ⋯ A 1 T (AB)^T=B^TA^T\\(A_1A_2\cdots A_n)^T=A_n^TA_{n-1}^T\cdots A_1^T (AB)T=BTAT(A1A2An)T=AnTAn1TA1T
    • ( A − 1 ) T = ( A T ) − 1 (A^{-1})^T=(A^T)^{-1} (A1)T=(AT)1
    • ( A ∗ ) T = ( A T ) ∗ (A^{*})^T=(A^T)^{*} (A)T=(AT)
  • 方阵的行列式 ∣ A ∣    o r    det ⁡ ( A ) |A|\; or\;\det (A) Aordet(A)

    • ∣ k A ∣ = k n ∣ A ∣ |kA|=k^n|A| kA=knA
    • ∣ A n × n B n × n ∣ = ∣ A ∣ ∣ B ∣ |A_{n\times n}B_{n\times n}|=|A||B| An×nBn×n=A∣∣B

2.3 inverse matrix

  • A − 1 = A ∗ ∣ A ∣ \displaystyle{A^{-1}=\frac{A^*}{|A|}} A1=AA
  • ( A B ) − 1 = B − 1 A − 1 (AB)^{-1}=B^{-1}A^{-1} (AB)1=B1A1
  • A ∗ = ∣ A ∣ A − 1 A^*=|A|A^{-1} A=AA1
  • A A ∗ = A ∗ A = ∣ A ∣ E AA^*=A^*A=|A|E AA=AA=AE

2.4 adjoint matrix

  • ∣ A ∗ ∣ = ∣ A ∣ n − 1 |A^*|=|A|^{n-1} A=An1
  • ( k A ) ∗ = k n − 1 A ∗ (kA)^*=k^{n-1}A^* (kA)=kn1A
  • ( A T ) ∗ = ( A ∗ ) T (A^T)^*=(A^*)^T (AT)=(A)T
  • ( A ∗ ) ∗ = ∣ A ∣ n − 2 A (A^*)^*=|A|^{n-2}A (A)=An2A
  • ( A ∗ ) − 1 = ( ∣ A ∣ A − 1 ) − 1 = A ∣ A ∣ (A^*)^{-1}=(|A|A^{-1})^{-1}=\displaystyle \frac{A}{|A|} (A)1=(AA1)1=AA
  • ( A B ) ∗ = B ∗ A ∗ (AB)^*=B^*A^* (AB)=BA

2.5 elementary matrix

R i j R i ( k ) R i + j ( k ) C i j C i ( k ) C i + j ( k ) R_{ij}\quad R_{i(k)}\quad R_{i+j(k)}\\ C_{ij}\quad C_{i(k)}\quad C_{i+j(k)} RijRi(k)Ri+j(k)CijCi(k)Ci+j(k)

2.6 rank of matrix

  • r ( A ) = r ( A T ) = r ( A A T ) r(A)=r(A^T)=r(AA^T) r(A)=r(AT)=r(AAT)
  • r ( A ± B ) ⩽ r ( A ) + r ( B ) r(A\pm B)\leqslant r(A)+r(B) r(A±B)r(A)+r(B)
  • r ( A ) + r ( B ) − n ⩽ r ( A B ) ⩽ m i n { r ( A ) ,    r ( B ) } r(A)+r(B)-n\leqslant r(AB)\leqslant min\{r(A),\;r(B)\} r(A)+r(B)nr(AB)min{r(A),r(B)}
  • r ( A ∗ ) = { n ,    r ( A ) = n , 1 ,    r ( A ) = n − 1 ( n ⩾ 2 ) , 0 ,    r ( A ) < n − 1 ( n ⩾ 2 ) . {r(A^*)=\left\{ \begin{array}{ll} n,\;r(A)=n,\\1,\;r(A)=n-1(n\geqslant2),\\0,\;r(A)<n-1(n\geqslant2).\end{array} \right.} r(A)= n,r(A)=n,1,r(A)=n1(n2),0,r(A)<n1(n2).
  • r [ A B ] ⩽ r ( A ) + r ( B ) r [ A O O B ] = r ( A ) + r ( B ) r\left[ \begin{array}{ll} A\\B\end{array}\right]\leqslant r(A)+r(B)\qquad r\left[ \begin{array}{ll} A&O\\O&B\end{array}\right]= r(A)+r(B) r[AB]r(A)+r(B)r[AOOB]=r(A)+r(B)

3 vector

3.1 concept & opetations

concepts

[ a 1 ,   a 2 , ⋯   , a n ] T ⇒ n 维列向量 [ a 1 ,   a 2 , ⋯   , a n ] ⇒ n 维行向量 ∣ a ∣ = a 1 2 + a 2 2 + ⋯ + a n 2 [a_1,\ a_2, \cdots,a_n]^T\Rightarrow n维列向量\\ [a_1,\ a_2, \cdots,a_n]\Rightarrow n维行向量 \\ |a|=\sqrt{a_1^2+a_2^2+\cdots+a_n^2} [a1, a2,,an]Tn维列向量[a1, a2,,an]n维行向量a=a12+a22++an2

operations
  • 加减法(略)

  • 内积

    • α β = ( α , β ) = a 1 b 1 + a 2 b 2 + ⋯ + a n b n \alpha \beta =(\bold\alpha, \bold\beta)=a_1b_1 +a_2b_2+\cdots+a_nb_n αβ=(α,β)=a1b1+a2b2++anbn

    • ( α , β ) = 0 (\alpha, \beta)=0 (α,β)=0 ,则两向量正交

    • α β = β α = α T β = α β T \alpha\beta=\beta\alpha=\alpha^T\beta=\alpha\beta^T αβ=βα=αTβ=αβT

3.2 向量组的线性相关性和线性表示

线性相关的定义

k 1 α 1 + k 2 α 2 + ⋯ + k s α s 为向量组 α 1 , α 2 , ⋯   , α s 的线性组合 若存在一组不全为 0 的数 x 1 , x 2 , ⋯   , x s 使 x 1 α 1 + x 2 α 2 + ⋯ + x s α s = 0 , 则称向量组 α 1 , α 2 , ⋯   , α s 线性相关 ⇕ 齐次方程组 [ α 1 , α 2 , ⋯   , α s ] = [ x 1 x 2 ⋮ x s ] = 0 ( A x = 0 ) 有非零解 ⇕ r ( A ) < s k_1\alpha_1+k_2\alpha_2+\cdots+k_s\alpha_s 为向量组\alpha_1,\alpha_2,\cdots,\alpha_s的线性组合\\ 若存在一组不全为0的数x_1,x_2,\cdots,x_s使x_1\alpha_1+x_2\alpha_2+\cdots+x_s\alpha_s=0,\\ \qquad 则称向量组 \alpha_1,\alpha_2,\cdots,\alpha_s线性相关\\ \qquad \Updownarrow\\ 齐次方程组[\alpha_1,\alpha_2,\cdots,\alpha_s]=\left[ \begin{array}{cc}x_1\\x_2\\\vdots\\x_s \end{array}\right]=0(Ax=0)有非零解\\ \qquad \Updownarrow\\ r(A)<s k1α1+k2α2++ksαs为向量组α1,α2,,αs的线性组合若存在一组不全为0的数x1,x2,,xs使x1α1+x2α2++xsαs=0,则称向量组α1,α2,,αs线性相关齐次方程组[α1,α2,,αs]= x1x2xs =0(Ax=0)有非零解r(A)<s

线性相关的判别方法

设有 s 个 m 维向量 α 1 , α 2 , ⋯   , α s , 构造矩阵 A = [ α 1 , α 2 , ⋯   , α s ] m × s 设有s个m维向量\alpha_1,\alpha_2,\cdots,\alpha_s,构造矩阵A=[\alpha_1,\alpha_2,\cdots,\alpha_s]_{m\times s} 设有sm维向量α1,α2,,αs,构造矩阵A=[α1,α2,,αs]m×s

  • s = m , 求行列式,满秩则无关,否则相关
  • s > m , 必线性相关
  • s < m , 变换为行阶梯型,求秩,若 r = s 则线性无关,否则相关
线性表示的定义

存在一组 x 1 , x 2 , ⋯   , x s x_1,x_2,\cdots,x_s x1,x2,,xs,使得 β = x 1 α 1 + x 2 α 2 + ⋯ + x s α s \beta =x_1\alpha_1+x_2\alpha_2+\cdots+x_s\alpha_s β=x1α1+x2α2++xsαs 成立,则称 β \beta β 可由 α 1 , α 2 , ⋯   , α s \alpha_1,\alpha_2,\cdots,\alpha_s α1,α2,,αs 线性表示,或称 β 是 α 1 , α 2 , ⋯   , α s \beta 是\alpha_1,\alpha_2,\cdots,\alpha_s βα1,α2,,αs线性组合

⇕ \Updownarrow

齐次方程组 [ α 1 , α 2 , ⋯   , α s ] = [ x 1 x 2 ⋮ x s ] = β ( A x = β ) 有解 齐次方程组[\alpha_1,\alpha_2,\cdots,\alpha_s]=\left[ \begin{array}{cc}x_1\\x_2\\\vdots\\x_s \end{array}\right]=\beta (Ax=\beta )有解 齐次方程组[α1,α2,,αs]= x1x2xs =β(Ax=β)有解

⇕ \Updownarrow

r ( A ∣ β ) = r ( A ) r(A|\beta)=r(A) r(Aβ)=r(A)

不存在任何一组 x 1 , x 2 , ⋯   , x s x_1,x_2,\cdots,x_s x1,x2,,xs,使得 β = x 1 α 1 + x 2 α 2 + ⋯ + x s α s \beta =x_1\alpha_1+x_2\alpha_2+\cdots+x_s\alpha_s β=x1α1+x2α2++xsαs ,则称 β \beta β 不可由 α 1 , α 2 , ⋯   , α s \alpha_1,\alpha_2,\cdots,\alpha_s α1,α2,,αs 线性表示

⇕ \Updownarrow

齐次方程组 [ α 1 , α 2 , ⋯   , α s ] = [ x 1 x 2 ⋮ x s ] = β ( A x = β ) 无解 齐次方程组[\alpha_1,\alpha_2,\cdots,\alpha_s]=\left[ \begin{array}{cc}x_1\\x_2\\\vdots\\x_s \end{array}\right]=\beta (Ax=\beta )无解 齐次方程组[α1,α2,,αs]= x1x2xs =β(Ax=β)无解

⇕ \Updownarrow

r ( A ∣ β ) = r ( A ) r(A|\beta)=r(A) r(Aβ)=r(A)

线性表示的重要结论
  • α 1 , α 2 , ⋯   , α s \alpha_1,\alpha_2,\cdots,\alpha_s α1,α2,,αs 线性无关,但 α 1 , α 2 , ⋯   , α s , β \alpha_1,\alpha_2,\cdots,\alpha_s,\beta α1,α2,,αs,β 线性相关,则 β \beta β 可由 α 1 , α 2 , ⋯   , α s \alpha_1,\alpha_2,\cdots,\alpha_s α1,α2,,αs 线性表示
  • β 1 , β 2 , ⋯   , β s \beta _1,\beta_2 ,\cdots,\beta_s β1,β2,,βs 可由 α 1 , α 2 , ⋯   , α t \alpha_1,\alpha_2,\cdots,\alpha_t α1,α2,,αt 线性表示,且 s > t , 则 β 1 , β 2 , ⋯   , β s \beta _1,\beta_2 ,\cdots,\beta_s β1,β2,,βs 线性相关
  • β 1 , β 2 , ⋯   , β s \beta _1,\beta_2 ,\cdots,\beta_s β1,β2,,βs 可由 α 1 , α 2 , ⋯   , α t \alpha_1,\alpha_2,\cdots,\alpha_t α1,α2,,αt 线性表示,且 β 1 , β 2 , ⋯   , β s \beta _1,\beta_2 ,\cdots,\beta_s β1,β2,,βs 线性无关,则 t ≥ \geq s

3.3 极大线性无关组

定义

α i 1 , α i 2 , ⋯   , α i r , \alpha_{i_1},\alpha_{i_2},\cdots,\alpha_{i_r}, αi1,αi2,,αir, 满足 :

  1. 取自 α 1 , α 2 , ⋯   , α s \alpha_1,\alpha_2,\cdots,\alpha_s α1,α2,,αs
  2. 线性无关
  3. α 1 , α 2 , ⋯   , α s \alpha_1,\alpha_2,\cdots,\alpha_s α1,α2,,αs 中任何一个都可以由其线性表示

则称 α i 1 , α i 2 , ⋯   , α i r \alpha_{i_1},\alpha_{i_2},\cdots,\alpha_{i_r} αi1,αi2,,αir α 1 , α 2 , ⋯   , α s \alpha_1,\alpha_2,\cdots,\alpha_s α1,α2,,αs 的一个极大线性无关组

对任何一个向量组而言,r 是唯一的,称为向量组 α 1 , α 2 , ⋯   , α s \alpha_1,\alpha_2,\cdots,\alpha_s α1,α2,,αs

求极大线性无关组的步骤

构造矩阵,作初等变换,化为行阶梯型矩阵,在每个台阶任取一列,即可得到极大线性无关组

3.4 等价向量组

定义

设有两个向量组:(1) α 1 , α 2 , ⋯   , α s \alpha_1,\alpha_2,\cdots,\alpha_s α1,α2,,αs ;(2) β 1 , β 2 , ⋯   , β t \beta _1,\beta_2 ,\cdots,\beta_t β1,β2,,βt
若(1)中每个向量都可有(2)线性表示,则称向量组(1)可由向量组(2)线性表示

若向量组(1)、(2)可互相线性表示,则称向量组(1)和向量组(2)等价,记为(1) ≅ \cong (2)

即:
[ α 1 , α 2 , ⋯   , α s ] = [ β 1 , β 2 , ⋯   , β t ] K t × s [ β 1 , β 2 , ⋯   , β t ] = [ α 1 , α 2 , ⋯   , α s ] M s × t [\alpha_1,\alpha_2,\cdots,\alpha_s]=[\beta_1,\beta_2,\cdots,\beta_t]K_{t\times s}\\ [\beta_1,\beta_2,\cdots,\beta_t]=[\alpha_1,\alpha_2,\cdots,\alpha_s]M_{s\times t} [α1,α2,,αs]=[β1,β2,,βt]Kt×s[β1,β2,,βt]=[α1,α2,,αs]Ms×t

等价向量组的充要条件

若(1)(2)中向量的维数相同,则它们等价的充要条件是 r ( ( 1 ) ) = r ( ( 2 ) ) = r ( ( 1 ) ∣ ( 2 ) ) r((1))=r((2))=r((1)|(2)) r((1))=r((2))=r((1)(2))

性质

自反性、对称性、传递性

3.5 标准正交向量组

定义

α 1 , α 2 , ⋯   , α s \alpha_1,\alpha_2,\cdots,\alpha_s α1,α2,,αs标准正交向量组 ⇔    ( α i , α j ) = { 1 ,    i = j , 0 ,    i ≠ j \Leftrightarrow\;(\alpha_i,\alpha_j)=\left\{\begin{array}{ll} 1,\;i=j,\\0,\;i\neq j\end{array}\right. (αi,αj)={1,i=j,0,i=j

施密特正交化

即从一组线性无关的向量组中求出一组正交向量的方法

α 1 , α 2 , ⋯   , α s \alpha_1,\alpha_2,\cdots,\alpha_s α1,α2,,αs 为欧氏空间 R n \R^n Rn 中的线性无关组,取:
β 1 = α 1 β 2 = α 2 − ( α 2 , β 1 ) ( β 1 , β 1 ) β 1 ⋮ β k = α k − ∑ i = 1 k − 1 ( α k , β i ) ( β i , β i ) β i      ( k = 3 , 4 , ⋯   , m ) , \beta_1=\alpha_1\\ \beta_2=\alpha_2-\frac{(\alpha_2,\beta_1)}{(\beta_1,\beta_1)}\beta_1\\ \vdots\\ \beta_k=\alpha_k-\sum_{i=1}^{k-1}\frac{(\alpha_k,\beta_i)}{(\beta_i,\beta_i)}\beta_i\;\;(k=3,4,\cdots,m), β1=α1β2=α2(β1,β1)(α2,β1)β1βk=αki=1k1(βi,βi)(αk,βi)βi(k=3,4,,m),
β 1 , β 2 , ⋯   , β m \beta _1,\beta_2 ,\cdots,\beta_m β1,β2,,βm R n \R^n Rn 中的正交向量组

3.6 向量空间

定义

设集合 V 非空,且 V ⊆ \subseteq Rn, 若 α + β ∈ V , k α ∈ V \alpha+\beta\in V,k\alpha \in V α+βV,kαVk为实数,则 V 为向量空间

空间的维与基数

V 是向量空间,若有向量组 α 1 , α 2 , ⋯   , α n ⊆ V \alpha_1,\alpha_2,\cdots,\alpha_n \subseteq V α1,α2,,αnV ,且满足
α 1 , α 2 , ⋯   , α n \alpha_1,\alpha_2,\cdots,\alpha_n α1,α2,,αn 线性无关
∀ β ∈ V , β \forall \beta \in V,\beta βV,β 可由 α 1 , α 2 , ⋯   , α n \alpha_1,\alpha_2,\cdots,\alpha_n α1,α2,,αn 线性表示
α 1 , α 2 , ⋯   , α n \alpha_1,\alpha_2,\cdots,\alpha_n α1,α2,,αn 是向量空间 V,且 V维数 dim ⁡ V = n \dim V=n dimV=n
α 1 , α 2 , ⋯   , α n \alpha_1,\alpha_2,\cdots,\alpha_n α1,α2,,αn 为n维向量空间 V 的标准正交向量组,则它为限量空间 V标准正交基

空间中向量的坐标

α 1 , α 2 , ⋯   , α n \alpha_1,\alpha_2,\cdots,\alpha_n α1,α2,,αn 是向量空间 V 的基,任取向量 ξ = [ α 1 , α 2 , ⋯   , α n ] [ x 1 x 2 ⋮ x n ] \xi = [ \alpha_1,\alpha_2,\cdots,\alpha_n ]\left[\begin{array}{cccc}x_1\\x_2\\\vdots\\x_n\end{array}\right] ξ=[α1,α2,,αn] x1x2xn x = [ α 1 , α 2 , ⋯   , α n ] x =[\alpha_1,\alpha_2,\cdots,\alpha_n] x=[α1,α2,,αn]T ξ \xi ξ 在基 α 1 , α 2 , ⋯   , α n \alpha_1,\alpha_2,\cdots,\alpha_n α1,α2,,αn 下的坐标向量

过渡矩阵和坐标变换

α 1 , α 2 , ⋯   , α n \alpha_1,\alpha_2,\cdots,\alpha_n α1,α2,,αn β 1 , β 2 , ⋯   , β n \beta _1,\beta_2 ,\cdots,\beta_n β1,β2,,βn 是 n 维向量空间 V 的两组基,
若有 n 阶方阵 C 使 [ β 1 , β 2 , ⋯   , β n \beta _1,\beta_2 ,\cdots,\beta_n β1,β2,,βn ] = [ α 1 , α 2 , ⋯   , α n ] C [\alpha_1,\alpha_2,\cdots,\alpha_n]C [α1,α2,,αn]C ,
则 C 是由基 α i \alpha_i αi 到基 β i \beta_i βi 的过渡矩阵

求坐标:
α x = β y \alpha x=\beta y αx=βy
α x = β C − 1 x \alpha x=\beta C^{-1}x αx=βC1x
⇒ y = C − 1 x \Rightarrow y=C^{-1}x y=C1x

4 linear equations

4.1 齐次线性方程组

向量形式: [ α 1 , α 2 , ⋯   , α n ] [ x 1 x 2 ⋮ x n ] = 0 [\alpha_1,\alpha_2,\cdots,\alpha_n]\left[\begin{array}{cccc}x_1\\x_2\\\vdots\\x_n\end{array}\right]=\bold{0} [α1,α2,,αn] x1x2xn =0

矩阵形式: A m × n x = 0 A_{m\times n}x={0} Am×nx=0

有解的条件
  • r(A)=n (向量组线性无关) 则方程组只有零解
  • r(A)=r<n (向量组线性相关) 方程组有非零解,且线性无关解的个数为 n-r

​ 特别地,若 A 为 n 阶方阵,则根据克拉默法则有:

  • 齐次线性方程组 Ax=0 只有零解的充要条件为 |A|$\neq$0
  • 齐次线性方程组 Ax=0 有非零解(或无数个解)的充要条件为 |A|=0
齐次线性方程组的解的性质

若 Ax1 = 0, Ax2=0, 则 A(k1x1+k2x2)=k1Ax1+k2Ax2=0
即齐次线性方程组的解的任意线性组合仍是方程组的解

齐次线性方程组的求解方法

高斯消元法:将系数矩阵 A 做初等行变换化为行阶梯型矩阵 B ,由于初等行变换不改变方程组的解,故 Ax=0 和 Bx=0 的解相同,只需解 Bx=0

将 B 的每行第一个非零元素所在列对应的未知数视为约束变量,其余变量为自由变量,令自由变量为任意常数,并用其表示约束变量,即可得到 Ax=0 的通解

齐次线性方程组的的基础解系和通解
  • 基础解系:
    x 1 , x 2 , ⋯   , x n − r x_1,x_2,\cdots,x_{n-r} x1,x2,,xnr 是方程组 A x = 0 Ax=0 Ax=0 的解,若满足 x 1 , x 2 , ⋯   , x n − r x_1,x_2,\cdots,x_{n-r} x1,x2,,xnr 线性无关,且方程组 A x = 0 Ax=0 Ax=0 的任何一个解均可由 x 1 , x 2 , ⋯   , x n − r x_1,x_2,\cdots,x_{n-r} x1,x2,,xnr 线性表示,则称 x 1 , x 2 , ⋯   , x n − r x_1,x_2,\cdots,x_{n-r} x1,x2,,xnr A x = 0 Ax=0 Ax=0 的基础解系

  • 通解:

    x 1 , x 2 , ⋯   , x n − r x_1,x_2,\cdots,x_{n-r} x1,x2,,xnr A x = 0 Ax=0 Ax=0 的基础解系,则 k 1 x 1 , k 2 x 2 , ⋯   , k n − r x n − r k_1x_1,k_2x_2,\cdots,k_{n-r}x_{n-r} k1x1,k2x2,,knrxnr 是方程组 A x = 0 Ax=0 Ax=0 的通解,其中 k 1 , k 2 , ⋯   , k n − r k_1,k_2,\cdots,k_{n-r} k1,k2,,knr 是任意常数(可全部取0)

齐次线性方程组的的解空间

S = { x ∣ A x = 0 } S=\{x|Ax=0\} S={xAx=0} 表示齐次线性方程组 A x = 0 Ax=0 Ax=0 的解的全体,且具有如下性质:

  1. 两个解的和仍是解
  2. 一个解的倍数仍是解

有 n 个未知量的齐次线性方程组 A x = 0 Ax=0 Ax=0 的解向量集合 S 构成 R n \R^n Rn 的一个子空间,称 S 为齐次线性方程组 A x = 0 Ax=0 Ax=0解空间

解空间也是向量空间的一种,也有基和维数,其维数为 A x = 0 Ax=0 Ax=0 线性无关解的个数

4.2 非齐次线性方程组

向量形式: [ α 1 , α 2 , ⋯   , α n ] [ x 1 x 2 ⋮ x n ] = b [\alpha_1,\alpha_2,\cdots,\alpha_n]\left[\begin{array}{cccc}x_1\\x_2\\\vdots\\x_n\end{array}\right]=\bold{b} [α1,α2,,αn] x1x2xn =b

矩阵形式: A m × n x = b A_{m\times n}x=\bold{b} Am×nx=b

矩阵 [ A ∣ b ] ,    [ A , b ] ,    A ~ [A|b],\;[A,b],\;\tilde{A} [Ab],[A,b],A~ 为矩阵 A 的增广矩阵

非齐次线性方程组有解的条件
  • r ( A ) ≠ r ( A ∣ b ) r(A)\neq r(A|b) r(A)=r(Ab) (b 不能由 A x = 0 Ax=0 Ax=0 的解线性表示),则方程组无解
  • r ( A ) = r ( A ∣ b ) = n r(A)=r(A|b)=n r(A)=r(Ab)=n α 1 , α 2 , ⋯   , α n \alpha_1,\alpha_2,\cdots,\alpha_n α1,α2,,αn 线性无关, α 1 , α 2 , ⋯   , α n , b \alpha_1,\alpha_2,\cdots,\alpha_n,b α1,α2,,αn,b 线性相关),则方程组有唯一解
  • r ( A ) = r ( A ∣ b ) = r < n r(A)=r(A|b)=r<n r(A)=r(Ab)=r<n 则方程组有无穷个解
非齐次线性方程组解的性质

ξ 1 , ξ 2 , ξ \xi_1,\xi_2,\xi ξ1,ξ2,ξ 为非齐次线性方程组 A x = b Ax=b Ax=b 的解, x 0 x_0 x0 为齐次线性方程组 A x = 0 Ax=0 Ax=0 的解,则

  1. ξ 1 − ξ 2 \xi_1-\xi_2 ξ1ξ2 A x = 0 Ax=0 Ax=0 的解
  2. k x 0 + ξ kx_0+\xi kx0+ξ A x = 0 Ax=0 Ax=0 的解(k为任意常数)
非齐次线性方程组的求解方法和通解结构

将增广矩阵 [ A ∣ b ] [A|b] [Ab] 做初等行变换化为行阶梯型矩阵,求出对应齐次线性方程组 A x = 0 Ax=0 Ax=0 的通解,再加上一个 A x = b Ax=b Ax=b 的特解即非齐次线性方程组 A x = b Ax=b Ax=b 的通解

4.3 方程组解的理论延伸

  • 若两个方程组 A m × n x = 0 A_{m\times n}x=0 Am×nx=0 B s × n x = 0 B_{s\times n}x=0 Bs×nx=0 有完全相同的解,则称为同解方程组
    ⇔ \Leftrightarrow A m × n x = 0 A_{m\times n}x=0 Am×nx=0 的解满足 B s × n x = 0 B_{s\times n}x=0 Bs×nx=0 B s × n x = 0 B_{s\times n}x=0 Bs×nx=0 的解满足 A m × n x = 0 A_{m\times n}x=0 Am×nx=0
    ⇔    r ( A ) = r ( B ) \Leftrightarrow\;r(A)=r(B) r(A)=r(B) ,且 A m × n x = 0 A_{m\times n}x=0 Am×nx=0 的解满足 B s × n x = 0 B_{s\times n}x=0 Bs×nx=0
    ⇔    r ( A ) = r ( B ) = r ( A B ) \Leftrightarrow\;r(A)=r(B)=r\left(\begin{array}{cc}A\\B\end{array}\right) r(A)=r(B)=r(AB)

  • 设 A 是 m × n m\times n m×n 矩阵,B 是 n × s n\times s n×s 型矩阵,若 AB = 0,则 B 的列向量组是方程组 A m × n x = 0 A_{m\times n}x=0 Am×nx=0 的一组解

5 similar matrix & quadratic form

5.1 eigenvector & eigenvalue

concepts

设 n 阶方阵 A 满足以下条件:存在数 λ \lambda λ(可为复数)和非零 n 维列向量 x x x 使 A x = λ x Ax=λx Ax=λx 成立,则称 λ 是方阵 A 的特征值 x x x 为方阵 A 对应特征值 λ 的特征向量

求法

A x = λ x Ax=λx Ax=λx 可得 ( λ E − A ) x = 0 (\lambda E-A)x=0 (λEA)x=0, 因为该齐次方程组有非零解 x x x,即 r ( λ E − A ) < n r(\lambda E-A)<n r(λEA)<n,所以 det ⁡ ( λ E − A ) = 0 \det (\lambda E-A)=0 det(λEA)=0,记 f ( λ ) = ∣ λ E − A ∣ f(\lambda)=|\lambda E-A| f(λ)=λEA,则 f ( λ ) f(\lambda) f(λ) 为 A 的特征多项式,它是关于 λ 的 n 次多项式

特征值就是 f ( λ ) = 0 f(\lambda)=0 f(λ)=0 的根,因此,n 阶方阵 A 在复数域上一共有 n 个特征值:$\lambda_1,\lambda_2,\cdots,\lambda_i $

再求特征值 λ i \lambda_i λi 对应的特征向量 x i x_i xi :由 A x = λ i x Ax=\lambda_ix Ax=λix 可知 ( λ i E − A ) x = 0 (\lambda_iE-A)x=0 (λiEA)x=0 ,求出该齐次线性方程组的非零解即为特征向量 x i x_i xi . 由齐次线性方程组有解的条件可知,方程组 ( λ i E − A ) x = 0 (\lambda_iE-A)x=0 (λiEA)x=0 n − r ( λ i E − A ) n-r(\lambda_iE-A) nr(λiEA) 个线性无关的非零解,记 k i = n − r ( λ i E − A ) k_i=n-r(\lambda_iE-A) ki=nr(λiEA),则 k i k_i ki 表示特征值 λ i \lambda_i λi 对应的线性无关的特征向量的个数,并称 k i k_i ki 为特征值 λ i \lambda_i λi几何重数

性质
  • ∣ A ∣ = ∏ i = 1 n λ i      ⇒ A 的行列式等于所有特征值的积 \displaystyle|A|=\prod_{i=1}^n\lambda_i\;\;\Rightarrow A的行列式等于所有特征值的积 A=i=1nλiA的行列式等于所有特征值的积
  • t r ( A ) = ∑ i = 1 n a i i = ∑ i = 1 n λ i      ⇒ A 的迹等于所有特征值的和 \displaystyle\bold{tr}(A)=\sum_{i=1}^na_{ii}=\sum_{i=1}^n\lambda_i\;\;\Rightarrow A的迹等于所有特征值的和 tr(A)=i=1naii=i=1nλiA的迹等于所有特征值的和
  • 任何一个特征值对应的特征向量都是无穷个
  • 不同特征值对应的特征向量线性无关
  • 若 A 有 t 个相同的特征值 λ ,则称 λ 为 A 的应该 t 重特征值,并称 t 为特征值 λ 的代数重数.
    显然,所有特征值的代数重数和为 n
  • 特征值 λ 的几何重数 k 小于等于 其代数重数 t ,即 k ⩽ t k \leqslant t kt
  • n 阶方阵最多有 n 个线性无关的特征向量
  • 若 A 的所有特征值互异 / 每个特征值的几何重数等于代数重数,则 A 有 n 个线性无关的特征向量
特殊矩阵的特征值和特征向量
  • A x = λ x Ax=λx Ax=λx ,则:

    A A A a A + b E aA+bE aA+bE A k A^k Ak f ( A ) f(A) f(A) A − 1 A^{-1} A1 A ∗ A^* A P − 1 A P P^{-1}AP P1AP A T A^T AT
    特征值 a λ + b a\lambda +b +b λ K \lambda^K λK f ( λ ) f(\lambda) f(λ) 1 λ \frac1{\lambda} λ1$\frac{A}{\lambda}$
    特征向量 x x x x x x x x x x x x x x x P − 1 x P^{-1}x P1x无关
  • r ( A ) = 1 r(A)=1 r(A)=1,则 A 的一个特征值为 t r ( A ) \bold{tr}(A) tr(A),其余特征值均为 0

  • 若 A 的每一行的和均为 a,则 a 一定为其特征值,且 a 对应的特征向量为 [ 1 , 1 , ⋯   , 1 ] T [1,1,\cdots,1]^T [1,1,,1]T

  • A = [ A 1 A 2 ⋱ A s ] \small{A=\left[\begin{array}{cccc}A_1\\&A_2\\&&\ddots\\&&&A_s \end{array} \right]} A= A1A2As ,其中 A i A_i Ai 均为方阵,则 A 的特征值为所有 A i A_i Ai 的特征值的并集(若为上三角或下三角也对)

  • 幂等矩阵 A 2 = A A^2=A A2=A 的特征值只可能为 0 或 1

5.2 矩阵的相似对角化

矩阵相似

对于 n 阶矩阵 A,B,若存在 n 阶可逆矩阵 P 使 P − 1 A P = B P^{-1}AP=B P1AP=B ,则称 A A A B B B 相似,记为 A ∼ B A\sim B AB

且此时有:

  • A 与 B 等价,即 r ( A ) = r ( B ) r(A)=r(B) r(A)=r(B)
  • A 与 B 的特征值相同 ⇒ ∣ A ∣ = ∣ B ∣    a n d    t r ( A ) = t r ( B ) \Rightarrow |A|=|B|\;and\;\bold{tr}(A)=\bold{tr}(B) A=Bandtr(A)=tr(B)
  • A 和 B 同一特征值对应的几何重数相等,即 r ( λ E − A ) = r ( λ E − B ) r(\lambda E-A)=r(\lambda E-B) r(λEA)=r(λEB)

本质:同一线性映射在不同基下的代数表达

相似对角化

若 A 相似于一个对角矩阵 Λ = [ λ 1 λ 2 ⋱ λ n ] \small{\Lambda =\left[\begin{array}{cccc}\lambda_1\\&\lambda_2\\&&\ddots\\&&&\lambda_n\end{array}\right]} Λ= λ1λ2λn ,则 λ 1 , λ 2 , ⋯   , λ n \lambda_1,\lambda_2,\cdots,\lambda_n λ1,λ2,,λn一定是 A A A 的特征值,称 A 可相似对角化,或简称为可对角化
此时, P − 1 A P = Λ P^{-1}AP=\Lambda P1AP=Λ,且 P = [ x 1 , x 2 , ⋯   , x n ] P=[x_1,x_2,\cdots,x_n] P=[x1,x2,,xn],其中 x i x_i xi 为特征值 λ i \lambda_i λi 对应的特征向量

  • r ( A ) = r ( Λ ) r(A)=r(\Lambda) r(A)=r(Λ),若 A 的特征值中存在 k 个0,且 A 可相似对角化,则 r ( A ) = n − k r(A)=n-k r(A)=nk
  • 若 A 和 B 均为对角矩阵,且特征值相同,则 A ∼ B A\sim B AB

矩阵 A 可相似对角化 ⟺ \Longleftrightarrow 有 n 个线性无关的特征向量

A 可对角化要求 A 的特征值 λ i \lambda_i λi 的代数重数 t i t_i ti 等于几何重数 k i k_i ki.
特别的,若每个特征值均互异,则一定可相似对角化

5.3 实对称矩阵的对角化

设 A 为一个实对称矩阵,则 A 的特征向量具有以下性质:

  • 不同特征值对应的特征向量正交(由于特征向量不为零向量,所以一定线性无关)

  • 同一特征值的代数重数一定等于几何重数

因此,实对称矩阵 A 一定可以相似对角化

正交矩阵

设 A 为 n 阶方阵,若 A T A = E    或    A A T = E A^TA=E\;或\;AA^T=E ATA=EAAT=E 则称 A 为正交矩阵
显然,正交矩阵满足== A − 1 = A T A^{-1}=A^T A1=AT==
|A|=1 或 -1

将 A 按列分块,即 A = [ α 1 , α 2 , ⋯   , α n ] A=[\alpha_1,\alpha_2,\cdots,\alpha_n] A=[α1,α2,,αn],则 α i T α j = { 1 ,    i = j , 0 ,    i ≠ j . \alpha_i^T\alpha_j=\left\{\begin{array}{ll}1,\;i=j,\\0,\;i\neq j.\end{array}\right. αiTαj={1,i=j,0,i=j.

A 为正交矩阵 ⟺ \Longleftrightarrow A 的列(行)向量组为 R n \R^n Rn 的一组标准正交基

对于一个实对称矩阵 A,有:
P − 1 A P = Λ = [ λ 1 λ 2 ⋱ λ n ] \small{P^{-1}AP=\Lambda =\left[\begin{array}{cccc}\lambda_1\\&\lambda_2\\&&\ddots\\&&&\lambda_n\end{array}\right]} P1AP=Λ= λ1λ2λn
将 P 矩阵列分块, P = [ x 1 , x 2 , ⋯   , x n ] P=[x_1,x_2,\cdots,x_n] P=[x1,x2,,xn],则 x i x_i xi 为特征值 λ i \lambda_i λi 对应的特征向量

通过施密特正交化方法和标准化,对于任意实对称矩阵 A,总可以找到正交矩阵 Q 使 Q T A Q = Λ Q^TAQ=\Lambda QTAQ=Λ

5.4 二次型

定义

关于 n 个未知量 x 1 , x 2 , ⋯   , x n x_1,x_2,\cdots,x_n x1,x2,,xn二次多项式

f ( X ) = f ( x 1 , x 2 , ⋯   , x n ) = a 11 x 1 2 + a 12 x 1 x 2 + ⋯ + a 1 n x 1 x n +       a 21 x 2 x 1 + a 22 x 2 2 + ⋯ + a 2 n x 2 x n + ⋯          a n 1 x n x 1 + a n 2 x n x 2 + ⋯ + a n n x n 2 = ∑ i = 1 n ∑ j = 1 n a i j x i x j = [ x 1 , x 2 , ⋯   , x n ] [ a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ a n 1 a n 2 ⋯ a n n ] [ x 1 x 2 ⋮ x n ] = X T A X f(X)=f(x_1,x_2,\cdots,x_n)=a_{11}x_1^2+a_{12}x_1x_2+\cdots+a_{1n}x_1x_n+\\\qquad\qquad\qquad\qquad\qquad\quad\;\;\, a_{21}x_2x_1+a_{22}x_2^2+\cdots+a_{2n}x_2x_n+\\\cdots\\\qquad\qquad\qquad\qquad\qquad\;\;\;\; a_{n1}x_nx_1+a_{n2}x_nx_2+\cdots+a_{nn}x_n^2\\=\displaystyle\sum_{i=1}^n\sum_{j=1}^na_{ij}x_ix_j=\left[x_1,x_2,\cdots,x_n\right]\left[\begin{array}{cccc}a_{11}&a_{12}&\cdots&a_{1n}\\a_{21}&a_{22}&\cdots&a_{2n}\\\vdots&\vdots&&\vdots\\a_{n1}&a_{n2}&\cdots&a_{nn}\end{array}\right]\left[\begin{array}{cccc}x_1\\x_2\\\vdots\\x_n\end{array}\right]=X^TAX f(X)=f(x1,x2,,xn)=a11x12+a12x1x2++a1nx1xn+a21x2x1+a22x22++a2nx2xn+an1xnx1+an2xnx2++annxn2=i=1nj=1naijxixj=[x1,x2,,xn] a11a21an1a12a22an2a1na2nann x1x2xn =XTAX

称为一个 n 元二次型,A 称为二次型的矩阵

一般把 A 写成一个对称矩阵,即 a i j = a j i a_{ij}=a_{ji} aij=aji ,使系数平均分配

化二次型维标准型或规范型

通过适当的变量将 f ( X ) f(X) f(X) 变换为 a 1 y 1 2 + a 2 y 2 2 + ⋯ + a n y n 2    ( a i 为实数 ) a_1y_1^2+a_2y_2^2+\cdots+a_ny_n^2\;(a_i为实数) a1y12+a2y22++anyn2(ai为实数) 的形式,则称这种二次型为标准形

若进一步变形为 z i 2 + ⋯ + z p 2 − z p + 1 2 − ⋯ − z p + q 2 z_i^2+\cdots+z_p^2-z_{p+1}^2-\cdots-z_{p+q}^2 zi2++zp2zp+12zp+q2 的形式,则称为规范形,其中 p 是正惯性系数,q 是负惯性系数。显然,规范性是标准型的特殊情况

  • 配方法
  • 正交变换法

惯性定理:实二次型 f ( X ) = X T A X f(X)=X^TAX f(X)=XTAX 经过可逆线性变换为标准形时,正负项的项数是唯一确定的,它们的和为矩阵 A 的秩,且正数项的个数为正惯性系数,负数项的个数为负惯性系数,正负惯性系数的差值称为符号差

5.5 矩阵的合同

若存在 n 阶可逆矩阵 P ,使得 P T A P = B P^TAP=B PTAP=B,则称 A 与 B 合同,记为 A ≃ B A\simeq B AB

合同矩阵一定等价

对于实对称矩阵,正惯性系数个数等于正特征值个数,负惯性系数等于负特征值个数,故符号差相同的同阶实对称矩阵一定合同

5.6 正定二次型和正定矩阵

定义

设 n 元实二次型 f ( x 1 , x 2 , ⋯   , x n ) = X T A X f(x_1,x_2,\cdots,x_n)=X^TAX f(x1,x2,,xn)=XTAX ,若对于任何非零列向量 x ∈ R n x\in \R^n xRn,均满足 x T A x > 0 x^TAx >0 xTAx>0 ,则称 f ( x 1 , x 2 , ⋯   , x n ) f(x_1,x_2,\cdots,x_n) f(x1,x2,,xn)正定二次型,同时称二次型矩阵 A 为正定矩阵
x T A x ⩾ 0 x^TAx\geqslant0 xTAx0 ,则称 A 为半正定矩阵

必要条件

若 A 正定,则:

  • a i i > 0 a_{ii}>0 aii>0
  • ∣ A ∣ > 0 |A|>0 A>0
  • A T = A A^T=A AT=A
充要条件

f 正定 f正定 f正定

⇔ A 正定 \Leftrightarrow A正定 A正定

⇔ A − 1 正定 \Leftrightarrow A^{-1}正定 A1正定

⇔ 所有特征值 λ i > 0 \Leftrightarrow 所有特征值\lambda_i>0 所有特征值λi>0

⇔ 正惯性系数    p = n \Leftrightarrow 正惯性系数\;p=n 正惯性系数p=n

⇔ n 个顺序主子式均大于 0 \Leftrightarrow n个顺序主子式均大于0 n个顺序主子式均大于0

⇔ A 合同于单位矩阵 E \Leftrightarrow A合同于单位矩阵E A合同于单位矩阵E

⇔ 存在可逆矩阵 P 使得 P T A P = E \Leftrightarrow 存在可逆矩阵 P 使得P^TAP=E 存在可逆矩阵P使得PTAP=E

负定矩阵

若对于任何非零列向量 x ∈ R n x\in \R^n xRn,均满足 x T A x < 0 x^TAx <0 xTAx<0,则对称矩阵 A 是负定矩阵

充要条件:

  • 所有特征值小于0
  • A 的偶数阶顺序主子式大于0,奇数阶顺序主子式小于0(正负相间)

  • 13
    点赞
  • 28
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值