【无标题】

Calculus

1. function, limits and continuity

1.1 函数

反函数

s h x ↔ l n ( x + x 2 + 1 ) shx \leftrightarrow ln(x+\sqrt{x^2+1}) shxln(x+x2+1 )

c h x ↔ l n ( x + x 2 − 1 ) chx \leftrightarrow ln(x+\sqrt{x^2-1}) chxln(x+x21 )

image-20230130102325093

1.2极限

计算方法
方法题型
lim ⁡ Δ → 0 ( 1 + Δ ) 1 Δ = e \displaystyle \lim_{\Delta\rightarrow 0}(1+\Delta)^{\frac{1}{\Delta}}=e Δ0lim(1+Δ)Δ1=e 1 ∞ 1^\infty 1
洛必达 0 0 或 ∞ ∞ \frac{0}{0}或\frac{\infty}{\infty} 00
麦克劳林公式有极限为0的项
夹逼准则n项式子求和(分母次数不等)
定积分n项式子求和(分母次数相等)
单调有界定理证明极限存在

斯特林公式:

n ! ∼ 2 π n ( n e ) n ,    n → ∞ n!\sim \sqrt{2\pi n}(\frac{n}{e})^n,\;n\rightarrow \infin n!2πn (en)n,n

连续与间断

间断点
  • 第一类间断点(左右极限均存在)
    • 可去间断点
    • 跳跃间断点
  • 第二类间断点(左右极限至少有一个不存在)
    • 无穷间断点
    • 震荡间断点

2. derivative and differential

2.1 导数公式

( tan ⁡ x ) ′ = sec ⁡ 2 x ( cot ⁡ x ) ′ = − csc ⁡ 2 x ( sec ⁡ x ) ′ = sec ⁡ x tan ⁡ x ( csc ⁡ x ) ′ = − csc ⁡ x cot ⁡ x ( arcsin ⁡ x ) ′ = 1 1 − x 2 ( arccos ⁡ x ) ′ = − 1 1 − x 2 ( arctan ⁡ x ) ′ = 1 1 + x 2 ( a r c c o t   x ) ′ = − 1 1 + x 2 ln ⁡ ( x + x 2 + 1 ) ′ = 1 x 2 + 1 ln ⁡ ( x + x 2 − 1 ) ′ = 1 x 2 − 1 \displaystyle (\tan x)'=\sec ^2x \qquad(\cot x)' = -\csc ^2x\\ (\sec x)'=\sec x \tan x \qquad (\csc x)'=-\csc x \cot x\\ (\arcsin x)'=\displaystyle\frac{1}{\sqrt{1-x^2}}\qquad (\arccos x)'=\displaystyle\frac{-1}{\sqrt{1-x^2}}\\ (\arctan x)'=\displaystyle\frac{1}{1+x^2}\qquad (arccot\ x)'=\displaystyle\frac{-1}{1+x^2}\\ \ln(x+\sqrt{x^2+1})'=\frac1{\sqrt{x^2+1}}\qquad\ln(x+\sqrt{x^2-1})'=\frac1{\sqrt{x^2-1}} (tanx)=sec2x(cotx)=csc2x(secx)=secxtanx(cscx)=cscxcotx(arcsinx)=1x2 1(arccosx)=1x2 1(arctanx)=1+x21(arccot x)=1+x21ln(x+x2+1 )=x2+1 1ln(x+x21 )=x21 1

2.2 莱布尼兹公式

[ u ( x ) v ( x ) ] ( n ) = ∑ k = 0 n C n k u ( n − k ) ( x ) v ( k ) ( x ) \Large [u(x)v(x)]^{(n)}=\sum^{n}_{k=0}C_n^ku^{(n-k)}(x)v^{(k)}(x) [u(x)v(x)](n)=k=0nCnku(nk)(x)v(k)(x)

3. application of derivative and the mean value theorem

3.1 极值、最值与凹凸性

极值点

极值点 ∈ \in 驻点

凹凸性
  • 凹函数(上凹,下凸)
    形如 ⋃ \bigcup
  • 凸函数(下凹,上凸)
    形如 ⋂ \bigcap

渐近线

  • 水平渐近线
    lim ⁡ x → ∞ f ( x ) = A ⇒ y = A 为水平渐近线 \displaystyle\lim _{x\rightarrow \infty}f(x)=A\\\Rightarrow y=A为水平渐近线 xlimf(x)=Ay=A为水平渐近线
  • 铅直渐近线
    lim ⁡ x → a f ( x ) = ∞ ⇒ x = a 为铅直渐近线 \displaystyle\lim _{x\rightarrow a}f(x)=\infty \\\Rightarrow x=a为铅直渐近线 xalimf(x)=x=a为铅直渐近线
  • 斜渐近线
    lim ⁡ x → ∞ f ( x ) x = k , lim ⁡ x → ∞ [ f ( x ) − k x ] = b \displaystyle\lim _{x \rightarrow \infty}\frac{f(x)}{x}=k,\lim _{x\rightarrow \infty}[f(x)-kx]=b xlimxf(x)=k,xlim[f(x)kx]=b
    ⇒ y = k x + b 为斜渐近线 \Rightarrow y=kx+b为斜渐近线 y=kx+b为斜渐近线

3.2 中值定理

罗尔定理

设 f ( x ) ∈ C [ a , b ] , 在 ( a , b ) 可导, f ( a ) = f ( b ) , 则 ∃ ξ ∈ ( a , b ) , s . t . f ′ ( ξ ) = 0 设f(x)\in C[a,b],在(a,b)可导,f(a)=f(b),则\exist \xi \in(a,b),s.t.f'(\xi)=0 f(x)C[a,b],(a,b)可导,f(a)=f(b),ξ(a,b),s.t.f(ξ)=0

拉格朗日中值定理

设 f ( x ) ∈ C [ a , b ] , 在 ( a , b ) 可导,则 ∃ ξ ∈ ( a , b ) , s . t . f ′ ( ξ ) = f ( b ) − f ( a ) b − a 设f(x)\in C[a,b],在(a,b)可导,则\exist \xi \in(a,b),s.t.f'(\xi)=\displaystyle\frac{f(b)-f(a)}{b-a} f(x)C[a,b],(a,b)可导,则ξ(a,b),s.t.f(ξ)=baf(b)f(a)

柯西中值定理

设 f ( x ) , g ( x ) ∈ C [ a , b ] , 在 ( a , b ) 可导,且满足 g ′ ( x ) ≠ 0 ( a < x < b ) , 则 ∃ ξ ∈ ( a , b ) , s . t . f ′ ( ξ ) g ′ ( ξ ) = f ( b ) − f ( a ) g ( b ) − g ( a ) 设f(x),g(x)\in C[a,b],在(a,b)可导,且满足g'(x)\neq0(a<x<b),则\exist \xi \in(a,b),s.t.\displaystyle \frac{f'(\xi)}{g'(\xi)}=\frac{f(b)-f(a)}{g(b)-g(a)} f(x),g(x)C[a,b],(a,b)可导,且满足g(x)=0(a<x<b),ξ(a,b),s.t.g(ξ)f(ξ)=g(b)g(a)f(b)f(a)

泰勒中值定理

f ( x ) = ∑ k = 0 n f ( k ) ( x 0 ) k ! ( x − x 0 ) k + R n ( x ) \large\displaystyle f(x)=\sum _{k=0}^n\frac{f^{(k)}(x_0)}{k!}(x-x_0)^k+R_n(x) f(x)=k=0nk!f(k)(x0)(xx0)k+Rn(x)

R ( n ) = f ( n + 1 ) ( ξ ) ( n + 1 ) ! ( x − x 0 ) n + 1 (拉格朗日余项, x < ξ < x 0 ) R(n)=\displaystyle\frac{f^{(n+1)}(\xi)}{(n+1)!}(x-x_0)^{n+1}(拉格朗日余项,x<\xi <x_0) R(n)=(n+1)!f(n+1)(ξ)(xx0)n+1(拉格朗日余项,x<ξ<x0

R ( n ) = o ( ( x − x 0 ) n ) (皮亚诺余项) R(n)=o((x-x_0)^n)(皮亚诺余项) R(n)=o((xx0)n)(皮亚诺余项)

3.3 弧微分

( d s ) 2 = ( d x ) 2 + ( d y ) 2 (ds)^2=(dx)^2+(dy)^2 (ds)2=(dx)2+(dy)2

  • d s = 1 + [ f ′ ( x ) ] 2 d x ds=\sqrt{1+[f'(x)]^2}dx ds=1+[f(x)]2 dx
  • d s = [ h ′ ( t ) ] 2 + [ g ′ ( t ) ] 2 d t ds=\sqrt{[h'(t)]^2+[g'(t)]^2}dt ds=[h(t)]2+[g(t)]2 dt
  • d s = [ r ( θ ) ] 2 + [ r ′ ( θ ) ] 2 d θ ds=\sqrt{[r(\theta)]^2+[r'(\theta)]^2}d\theta ds=[r(θ)]2+[r(θ)]2 dθ

3.4曲率

曲率 K , 曲率半径 R = 1 K 曲率K, 曲率半径R=\displaystyle\frac{1}{K} 曲率K,曲率半径R=K1

  • K = ∣ y ′ ′ ∣ [ 1 + ( y ′ ) 2 ] 3 2 K=\displaystyle\frac{|y''|}{[1+(y')^2]^{\frac32}} K=[1+(y)2]23y′′
  • K = ∣ h ′ ( t ) g ′ ′ ( t ) − h ′ ′ ( t ) g ′ ( t ) ∣ { [ h ′ ( t ) ] 2 + [ g ′ ( t ) ] 2 } 3 2 K=\displaystyle\frac{|h'(t)g''(t)-h''(t)g'(t)|}{\{[h'(t)]^2+[g'(t)]^2\}^{\frac 32}} K={[h(t)]2+[g(t)]2}23h(t)g′′(t)h′′(t)g(t)
  • K = ∣ r 2 + 2 r ′ 2 + r r ′ ′ ∣ ( r 2 + r ′ 2 ) 3 2 K=\displaystyle\frac{|r^2+2r'^2+rr''|}{(r^2+r'^2)^{\frac32}} K=(r2+r′2)23r2+2r′2+rr′′

4. indefinite integral

4.1 积分公式

三角函数类

∫ tan ⁡ x d x = − ln ⁡ ∣ cos ⁡ x ∣ + C ∫ cot ⁡ x d x = ln ⁡ ∣ sin ⁡ x ∣ + C ∫ sec ⁡ x d x = ln ⁡ ∣ sec ⁡ x + tan ⁡ x ∣ + C ∫ csc ⁡ x d x = ln ⁡ ∣ csc ⁡ x − cot ⁡ x ∣ + C ∫ sec ⁡ 2 x d x = tan ⁡ x + C ∫ csc ⁡ 2 x d x = − cot ⁡ x + C \int \tan xdx=-\ln |\cos x|+C \qquad\int \cot x dx=\ln|\sin x|+C\\ \int \sec xdx=\ln|\sec x + \tan x|+C\qquad\int\csc xdx=\ln|\csc x-\cot x|+C\\ \int \sec ^2xdx=\tan x +C\qquad \int \csc^2xdx=-\cot x+ C tanxdx=lncosx+Ccotxdx=lnsinx+Csecxdx=lnsecx+tanx+Ccscxdx=lncscxcotx+Csec2xdx=tanx+Ccsc2xdx=cotx+C

”x2“类

∫ 1 a 2 − x 2 d x = arcsin ⁡ x a + C ∫ 1 a 2 + x 2 d x = 1 a arctan ⁡ x a + C ∫ 1 x 2 − a 2 d x = ln ⁡ ∣ x + x 2 − a 2 ∣ + C ∫ 1 x 2 + a 2 d x = ln ⁡ ∣ x + x 2 + a 2 ∣ + C ∫ 1 x 2 − a 2 d x = 1 2 a ln ⁡ ∣ x − a x + a ∣ + C ∫ a 2 − x 2 d x = a 2 2 arcsin ⁡ x a + x 2 a 2 − x 2 + C \displaystyle \int\frac{1}{\sqrt{a^2-x^2}}dx=\arcsin \frac xa+C\qquad\int\frac{1}{a^2+x^2}dx=\frac1a\arctan\frac xa+C\\ \int \frac{1}{\sqrt{x^2-a^2}}dx=\ln|x+\sqrt{x^2-a^2}|+C\qquad\int\frac{1}{\sqrt{x^2+a^2}}dx=\ln|x+\sqrt{x^2+a^2}|+C\\ \int \frac1{x^2-a^2}dx=\frac1{2a}\ln\left|\frac{x-a}{x+a}\right|+C\\ \int \sqrt{a^2-x^2}dx=\frac{a^2}2\arcsin\frac xa+\frac x2\sqrt{a^2-x^2}+C a2x2 1dx=arcsinax+Ca2+x21dx=a1arctanax+Cx2a2 1dx=lnx+x2a2 +Cx2+a2 1dx=lnx+x2+a2 +Cx2a21dx=2a1ln x+axa +Ca2x2 dx=2a2arcsinax+2xa2x2 +C

积分方法

换元积分法
第一类换元积分法–凑微分法
第二类换元积分法–真换元
分步积分法

有理函数的不定积分

5. definite integral

5.1 定义

∫ a b f ( x ) d x = lim ⁡ λ → 0 ∑ i = 1 n f ( ξ i ) Δ x i \int _a^bf(x)dx=\lim _{\lambda \rightarrow 0}\sum_{i=1}^nf(\xi_i)\Delta x_i abf(x)dx=λ0limi=1nf(ξi)Δxi

5.2 积分不等式

绝对值不等式

∣ ∫ a b f ( x ) ∣ ⩽ ∫ a b ∣ f ( x ) ∣ d x |\int _a^bf(x)|\leqslant\int_a^b|f(x)|dx abf(x)abf(x)dx

积分中值定理

设 f ( x ) ∈ C [ a , b ] , 则 ∃ ξ ∈ [ a , b ] , s . t . ∫ a b f ( x ) d x = f ( ξ ) ( b − a ) 设f(x)\in C[a,b],则\exist \xi \in[a,b],s.t.\int_a^bf(x)dx=f(\xi)(b-a) f(x)C[a,b],ξ[a,b],s.t.abf(x)dx=f(ξ)(ba)

积分第一中值定理

设 f ( x ) , g ( x ) ∈ C [ a , b ] , 则 ∃ ξ ∈ ( a , b ) , s . t . ∫ a b f ( x ) g ( x ) d x = f ( ξ ) ∫ a b g ( x ) d x 设f(x),g(x)\in C[a,b],则\exist \xi \in (a,b),s.t.\int _a^bf(x)g(x)dx=f(\xi)\int _a^bg(x)dx f(x),g(x)C[a,b],ξ(a,b),s.t.abf(x)g(x)dx=f(ξ)abg(x)dx

柯西不等式

设 f ( x ) , g ( x ) ∈ C [ a , b ] , 则 [ ∫ a b f ( x ) g ( x ) d x ] 2 ⩽ ∫ a b f 2 ( x ) d x ⋅ ∫ a b g 2 ( x ) d x 设f(x),g(x)\in C[a,b],则[\int _a^bf(x)g(x)dx]^2\leqslant\int _a^bf^2(x)dx\cdot\int _a^bg^2(x)dx f(x),g(x)C[a,b],[abf(x)g(x)dx]2abf2(x)dxabg2(x)dx

5.3 特殊性质

对称区间性质
  • 奇函数–>0
  • 偶函数–>2倍
三角函数定积分性质
  • f ( x ) ∈ C [ 0 , 1 ] , 则 ∫ 0 π 2 f ( sin ⁡ x ) d x = ∫ 0 π 2 f ( cos ⁡ x ) d x f(x)\in C[0,1],则\int _0^{\frac{\pi}2}f(\sin x)dx=\int _0^{\frac{\pi}2}f(\cos x)dx f(x)C[0,1],02πf(sinx)dx=02πf(cosx)dx

  • Wallis 公式

    设 I n = ∫ 0 π 2 sin ⁡ n x d x = ∫ 0 π 2 cos ⁡ n x d x 设I_n=\int _0^{\frac{\pi}2}\sin^nx dx=\int _0^{\frac{\pi}2}\cos^nx dx In=02πsinnxdx=02πcosnxdx

    则有 I n = n − 1 n I ( n − 2 ) 则有I_n=\displaystyle \frac{n-1}{n}I(n-2) 则有In=nn1I(n2)

    I n = { ( n − 1 ) ! ! n ! ! ⋅ π 2 ,    n = 2 k , ( n − 1 ) ! ! n ! ! ,    n = 2 k + 1 \displaystyle I_n=\left\{\begin{array}{ll}\displaystyle\frac{(n-1)!!}{n!!}\cdot\frac{\pi}{2},\;n=2k,\\\displaystyle\frac{(n-1)!!}{n!!},\;n=2k+1 \end{array}\right. In= n!!(n1)!!2π,n=2k,n!!(n1)!!,n=2k+1

    I 0 = π 2 ,    I 1 = 1 ,    I 2 = π 4 ,    I 3 = 2 3 I_0=\frac{\pi}2,\;I_1=1,\;I_2=\frac{\pi}4,\;I_3=\frac23 I0=2π,I1=1,I2=4π,I3=32

  • f ( x ) ∈ C [ 0 , 1 ] , 则 ∫ 0 π x f ( sin ⁡ x ) d x = π 2 ∫ 0 π f ( sin ⁡ x ) d x = π ∫ 0 π 2 f ( sin ⁡ x ) d x \displaystyle f(x)\in C[0,1],则\int_0^{\pi}xf(\sin x)dx=\frac{\pi}2\int_0^{\pi}f(\sin x)dx=\pi\int_0^{\frac{\pi}2}f(\sin x)dx f(x)C[0,1],0πxf(sinx)dx=2π0πf(sinx)dx=π02πf(sinx)dx

周期函数定积分性质
  • ∫ a a + T f ( x ) d x = ∫ 0 T f ( x ) d x \int _a^{a+T}f(x)dx=\int_0^Tf(x)dx aa+Tf(x)dx=0Tf(x)dx
  • ∫ 0 n T f ( x ) d x = n ∫ 0 T f ( x ) d x \int_0^{nT}f(x)dx=n\int_0^Tf(x)dx 0nTf(x)dx=n0Tf(x)dx
其它
  • ∫ 0 a a 2 − x 2 d x = π 4 a 2 \displaystyle\int _0^a\sqrt{a^2-x^2}dx=\frac{\pi}4a^2 0aa2x2 dx=4πa2
  • ∫ a b ( x − a + b 2 ) n d x = { 0 ,       n 为奇数, 2 n + 1 ( b − a x ) n + 1 , n 为偶数 \displaystyle \int _a^b\left(x-\frac{a+b}{2}\right)^ndx=\left\{\begin{array}{l}0,\qquad \qquad \qquad \quad\;\;\, n为奇数,\\\displaystyle\frac{2}{n+1}\left(\frac{b-a}{x}\right)^{n+1},n为偶数 \end{array}\right. ab(x2a+b)ndx= 0,n为奇数,n+12(xba)n+1,n为偶数

5.4 定积分基本定理

  • ( ∫ a x f ( t ) d t ) ′ = f ( x ) \displaystyle \left(\int _a^xf(t)dt\right)'=f(x) (axf(t)dt)=f(x)

  • ( ∫ α ( x ) β ( x ) f ( t ) d t ) ′ = f ( β ( x ) ) β ′ ( x ) − f ( α ( x ) ) α ′ ( x ) \displaystyle \left(\int_{\alpha(x)}^{\beta(x)}f(t)dt\right)'=f(\beta(x))\beta'(x)-f(\alpha(x))\alpha'(x) (α(x)β(x)f(t)dt)=f(β(x))β(x)f(α(x))α(x)

5.5 反常函数

5.6 Euler积分

伽马函数
  • Γ ( s ) = ∫ 0 + ∞ e − x x s − 1 d x    ( s > 0 ) \large\Gamma(s)=\int_0^{+\infty}e^{-x}x^{s-1}dx\;(s>0) Γ(s)=0+exxs1dx(s>0)

  • 性质

    • Γ ( s + 1 ) = s Γ ( s ) \Gamma(s+1)=s\Gamma(s) Γ(s+1)=sΓ(s)
    • Γ ( s ) Γ ( 1 − s ) = π sin ⁡ π s    ( 0 < s < 1 ) \displaystyle\Gamma(s)\Gamma(1-s)=\frac{\pi}{\sin \pi s}\;(0<s<1) Γ(s)Γ(1s)=sinπsπ(0<s<1)
    • Γ ( 1 ) = Γ ( 2 ) = 1 ,    Γ ( 1 2 ) = π \Gamma(1)=\Gamma(2)=1,\;\Gamma(\frac{1}{2})=\sqrt{\pi} Γ(1)=Γ(2)=1,Γ(21)=π
贝塔函数
  • B ( P , Q ) = ∫ 0 1 x P − 1 ( 1 − x ) Q − 1 d x    ( P , Q > 0 ) \large B(P,Q)=\int _0^1x^{P-1}(1-x)^{Q-1}dx\;(P,Q>0) B(P,Q)=01xP1(1x)Q1dx(P,Q>0)

  • 性质

    • 对成性
    • 递推公式
      • B ( P , Q ) = Q − 1 P + Q − 1 B ( P , Q − 1 ) = P − 1 P + Q − 1 B ( P − 1 , Q ) \displaystyle B(P,Q)=\frac{Q-1}{P+Q-1}B(P,Q-1)=\frac{P-1}{P+Q-1}B(P-1,Q) B(P,Q)=P+Q1Q1B(P,Q1)=P+Q1P1B(P1,Q)
      • B ( P , Q ) = ( P − 1 ) ( Q − 1 ) ( P + Q − 1 ) ( P + Q − 2 ) B ( P − 1 , Q − 1 ) \displaystyle B(P,Q)=\frac{(P-1)(Q-1)}{(P+Q-1)(P+Q-2)}B(P-1,Q-1) B(P,Q)=(P+Q1)(P+Q2)(P1)(Q1)B(P1,Q1)
    • 关系
      • B ( P , Q ) = Γ ( P ) Γ ( Q ) Γ ( P + Q ) B(P,Q)=\displaystyle\frac{\Gamma(P)\Gamma(Q)}{\Gamma(P+Q)} B(P,Q)=Γ(P+Q)Γ(P)Γ(Q)
      • B ( P , 1 − P ) = Γ ( P ) Γ ( 1 − P ) = π sin ⁡ π P B(P,1-P)=\Gamma(P)\Gamma(1-P)=\displaystyle\frac{\pi}{\sin \pi P} B(P,1P)=Γ(P)Γ(1P)=sinπPπ
  • 变形

    • B ( P , Q ) = 2 ∫ 0 π 2 ( cos ⁡ θ ) 2 P − 1 ( sin ⁡ θ ) 2 Q − 1 d θ \displaystyle B(P,Q)=2\int _0^{\frac{\pi}{2}}(\cos \theta)^{2P-1}(\sin \theta)^{2Q-1}d\theta B(P,Q)=202π(cosθ)2P1(sinθ)2Q1dθ

5.6 几何应用

面积
  • 平面

    • 平面直角坐标(略)

    • 极坐标

      • D 由 r = r ( θ ) ( α ⩽ θ ⩽ β ) 围成,则 S D = 1 2 ∫ α β r 2 ( θ ) d θ D由r=r(\theta)(\alpha\leqslant\theta\leqslant \beta)围成,则S_D=\displaystyle \frac12\int_{\alpha}^{\beta}r^2(\theta)d\theta Dr=r(θ)(αθβ)围成,则SD=21αβr2(θ)dθ
      • D 由 r = r 1 ( θ ) , r = r 2 ( θ ) ( r 1 ( θ ) ⩽ r 2 ( θ ) ,    α ⩽ θ ⩽ β ) 围成,则 S D = 1 2 ∫ α β [ r 2 2 ( θ ) − r 1 2 ( θ ) ] d θ D由r=r_1(\theta),r=r_2(\theta)(r_1(\theta)\leqslant r_2(\theta),\;\alpha\leqslant \theta\leqslant \beta)围成,则S_D=\displaystyle \frac12\int_{\alpha}^{\beta}[r_2^2(\theta)-r_1^2(\theta)]d\theta Dr=r1(θ),r=r2(θ)(r1(θ)r2(θ),αθβ)围成,则SD=21αβ[r22(θ)r12(θ)]dθ
  • 旋转曲面

    • 平面直角坐标

      • y = f ( x ) 绕 x 轴旋转所得旋转体表面积 S = 2 π ∫ a b ∣ f ( x ) ∣ ⋅ 1 + f ′ 2 ( x ) d x y=f(x)绕x轴旋转所得旋转体表面积S=2\pi\int_a^b|f(x)|\cdot\sqrt{1+f'^2(x)}dx y=f(x)x轴旋转所得旋转体表面积S=2πabf(x)1+f′2(x) dx

        image-20230130213111075
      • L : { y = h ( t ) x = g ( t ) , m ≤ t ≤ n , 则 L 绕 x 轴旋转一周所得旋转体表面积 S = 2 π ∫ m n ∣ h ( t ) ∣ h ′ 2 ( t ) + g ′ 2 ( t ) d t L:\left\{\begin{array}{cc}y=h(t)\\x=g(t) \end{array}\right.,m\leq t\leq n, 则L绕x轴旋转一周所得旋转体表面积S=2\pi\int_m^n |h(t)|\sqrt{h'^2(t)+g'^2(t)}dt L:{y=h(t)x=g(t),mtn,Lx轴旋转一周所得旋转体表面积S=2πmnh(t)h′2(t)+g′2(t) dt

    • 极坐标
      L : r = r ( θ ) , ( α ≤ θ ≤ β ) , 则 L 绕极轴旋转所得旋转体表面积 S = 2 π ∫ α β ∣ r ( θ ) sin ⁡ θ ∣ r 2 ( θ ) + r ′ 2 ( θ ) d θ L:r=r(\theta),(\alpha\leq\theta\leq\beta),则L绕极轴旋转所得旋转体表面积\displaystyle S=2\pi\int_{\alpha}^{\beta}|r(\theta)\sin \theta|\sqrt{r^2(\theta)+r'^2{(\theta)}}d\theta L:r=r(θ),(αθβ),L绕极轴旋转所得旋转体表面积S=2παβr(θ)sinθr2(θ)+r′2(θ) dθ
      image-20230130215402255

体积

弧长

见 [弧微分](###3.3 弧微分)

6. differential equation model

6.1 一阶微分方程

  • 可分离变量的微分方程

​ 分离变量 --> 积分

  • 齐次微分方程

d y d x = φ ( y x ) \displaystyle\frac{dy}{dx}=\varphi (\frac{y}{x}) dxdy=φ(xy)

令 u = y x ,    则 d y d x = u + x d u d x ,    代入 d y d x = φ ( u ) ,分离变量积分求解 令\displaystyle u=\frac{y}{x},\;则 \frac{dy}{dx}=u+x\frac{du}{dx},\;代入\frac{dy}{dx}=\varphi (u),分离变量积分求解 u=xy,dxdy=u+xdxdu,代入dxdy=φ(u),分离变量积分求解

  • 一阶齐次线性微分方程

d y d x + P ( x ) y = 0 ⇓ y = C e − ∫ P ( x ) d x \displaystyle \frac{dy}{dx}+P(x)y=0\\ \Downarrow\\ y=Ce^{-\int P(x)dx} dxdy+P(x)y=0y=CeP(x)dx

  • 一阶非齐次线性微分方程

d y d x + P ( x ) y = Q ( x ) ⇓ y = ( ∫ Q ( x ) e ∫ P ( x ) d x d x + C ) e − ∫ P ( x ) d x \displaystyle \frac{dy}{dx} +P(x)y=Q(x)\\ \Downarrow \\ y=(\int Q(x)e^{\int P(x)dx}dx+C)e^{-\int P(x)dx} dxdy+P(x)y=Q(x)y=(Q(x)eP(x)dxdx+C)eP(x)dx

6.2 可降阶的高阶微分方程

  • y ( n ) = f ( x ) y^{(n)}=f(x) y(n)=f(x)
    n次积分

  • y ′ ′ = f ( x , y ′ ) y''=f(x,y') y′′=f(x,y)

    y ′ y' y换元,积分,再代回

  • y ′ ′ = f ( y , y ′ ) y''=f(y,y') y′′=f(y,y)

6.3 高阶微分方程

基本概念
  • 齐次线性微分方程

y ( n ) + a 1 ( x ) y ( n − 1 ) + ⋯ + a n − 1 ( x ) y ′ + a n ( x ) y = 0 ( 1 ) y^{(n)}+a_1(x)y^{(n-1)}+\cdots +a_{n-1}(x)y'+a_n(x)y=0 \qquad(1) y(n)+a1(x)y(n1)++an1(x)y+an(x)y=0(1)

  • 非齐次线性微分方程

y ( n ) + a 1 ( x ) y ( n − 1 ) + ⋯ + a n − 1 ( x ) y ′ + a n ( x ) y = f ( x ) ( 2 ) y^{(n)}+a_1(x)y^{(n-1)}+\cdots +a_{n-1}(x)y'+a_n(x)y=f(x) \qquad(2) y(n)+a1(x)y(n1)++an1(x)y+an(x)y=f(x)(2)

  • f ( x ) = f 1 ( x ) + f 2 ( x ) f(x)=f_1(x)+f_2(x) f(x)=f1(x)+f2(x),则(2)可分解为如下两个方程
    y ( n ) + a 1 ( x ) y ( n − 1 ) + ⋯ + a n − 1 ( x ) y ′ + a n ( x ) y = f 1 ( x ) ( 3 ) y ( n ) + a 1 ( x ) y ( n − 1 ) + ⋯ + a n − 1 ( x ) y ′ + a n ( x ) y = f 2 ( x ) ( 4 ) y^{(n)}+a_1(x)y^{(n-1)}+\cdots +a_{n-1}(x)y'+a_n(x)y=f_1(x) \qquad(3)\\ y^{(n)}+a_1(x)y^{(n-1)}+\cdots +a_{n-1}(x)y'+a_n(x)y=f_2(x) \qquad(4) y(n)+a1(x)y(n1)++an1(x)y+an(x)y=f1(x)(3)y(n)+a1(x)y(n1)++an1(x)y+an(x)y=f2(x)(4)
解的结构
  • 类比线性方程组解的结构
二阶常系数齐次微分方程

形如 y ′ ′ + p y ′ + q y = 0 y''+py'+qy=0 y′′+py+qy=0 的方程成为二阶常系数齐次微分方程
r 2 + p r + q = 0 r^2+pr+q=0 r2+pr+q=0 为其特征方程

根据特征方程的三种情况,其通解如下表:

特征方程的两根 r 1 , r 2 r_1,r_2 r1,r2微分方程的通解
两不等实根 y = C 1 e r 1 x + C 2 e r 2 x y=C_1e^{r_1x}+C_2e^{r_2x} y=C1er1x+C2er2x
两相等实根 y = ( C 1 + C 2 x ) e r x y=(C_1+C_2x)e^{rx} y=(C1+C2x)erx
一对共轭复根 r 1 , 2 = α ± β i r_{1,2}=\alpha\pm\beta i r1,2=α±βi y = e α x ( C 1 cos ⁡ β x + C 2 sin ⁡ β x ) y=e^{\alpha x}(C_1\cos \beta x+C_2\sin \beta x) y=eαx(C1cosβx+C2sinβx)
二阶常系数非齐次线性微分方程

形如 y ′ ′ + p y ′ + q y = f ( x ) y''+py'+qy=f(x) y′′+py+qy=f(x) 的方程成为二阶常系数非齐次微分方程
其解为对应的齐次微分方程的通解加上其本身的应该特解。

用待定系数法求形如 y ′ ′ + p y ′ + q y = f ( x ) y''+py'+qy=f(x) y′′+py+qy=f(x) 的特解,其中 f ( x ) f(x) f(x) 一般有两种 形式:

  • f ( x ) = P m ( x ) e λ x f(x)=P_m(x)e^{\lambda x} f(x)=Pm(x)eλx

    特解设为: y ∗ = x k Q m ( x ) e λ x y^*=x^kQ_m(x)e^{\lambda x} y=xkQm(x)eλx

    其中, k 为 λ \lambda λ 与特征根的重复次数 (0 / 1 / 2)

  • f ( x ) = e α x [ P 1 ( x ) cos ⁡ ω x + Q n ( x ) sin ⁡ ω x ] f(x)=e^{\alpha x}[P_1(x)\cos \omega x+Q_n(x)\sin \omega x] f(x)=eαx[P1(x)cosωx+Qn(x)sinωx]
    特解设为: y ∗ = x k e λ x [ P m ( x ) cos ⁡ ( ω x ) + Q m ( x ) sin ⁡ ( ω x ) ] y^*=x^ke^{\lambda x}[P_m(x)\cos(\omega x)+Q_m(x)\sin(\omega x)] y=xkeλx[Pm(x)cos(ωx)+Qm(x)sin(ωx)]
    其中, k 为 λ + ω i \lambda+\omega i λ+ωi 与特征根的重复次数

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值