TVT_Transferable Vision Transformer for Unsupervised Domain Adaptation

文章探讨了TAM中的鉴别器D如何评估特征的源域与目标域归属概率,指出特征熵在跨域迁移中的作用。当鉴别器输出为0.5时,特征具有更强的迁移能力,权重增大。K_patch与1拼接用于形状匹配,而DCM涉及公式解释了特征处理过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

TAM:

具体来说,鉴别器D指的是该特征属于源域的概率。如果该特征越有可能来自源域输出就会越接近1,越可能来自目标域的话输出越接近为0。

现在假设,经过特征提取器提取到的特征如果被鉴别器D判为0.5,既像源域又像目标域,则说明该特征更容易跨域迁移,此时熵最大,经过标准熵函数H就能够赋予它更高的权重。

当鉴别器输出接近1或者接近0都说明特征的跨域迁移能力不好,那么权重的值就应该小。

TAM:

K_patch与1进行拼接是为了补齐形状。在特征进入域鉴别器前会先剔除class_token,因此得到的用于计算该值的K_patch是比正常tokens少一个维度的。

DCM:

对于公式的理解:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值