Poisson Distribution 2: 泊松分布,指数分布,正态分布

上一讲我们从二项分布开始得出了泊松分布的概率密度函数。

回顾

上一讲的主要结论是:若一个事件在每一时刻等概率发生,平均发生次数为 λ \lambda λ (次/单位时间), 令随机变量 X X X 表示 T T T 时间内事件发生次数, 则有
Pr ⁡ ( X = k ) = ( λ T ) k k   ! e − λ T ,   k = 0 , 1 , 2 , . . . \Pr(X=k)=\frac{(\lambda T)^k}{k\,!}e^{-\lambda T},~k=0,1,2,... Pr(X=k)=k!(λT)keλT, k=0,1,2,...

现在考虑一个银行的服务窗口。我们可以用泊松过程来建模办理业务人员的到达过程。泊松过程有以下两个假设

  1. 不重叠的时间段内的到达人数是独立的。
  2. 任一时间段内到达人数满足泊松分布。

可以看出,我们实际上用泊松分布定义出了一个系统的到达过程,而任一时间段内得到达人数正是用泊松分布来刻画的。

现在我们来问另一个问题,从任一时间点开始,下一个人会隔多久到达尼?

指数分布

从任意时间点开始,我们令下一个人的到达时间为随机变量 T T T. 这里求 T T T的概率密度函数的一个简单方法是看他的CDF F T ( T ≤ t ) = 1 − F T ( T > t ) F_T(T\leq t)=1-F_T(T> t) FT(Tt)=1FT(T>t), 因为 F T ( T > t ) F_T(T> t) FT(T>t)很好求:
F T ( T > t ) = ( λ t ) 0 0   ! e − λ t = e − λ t F_T(T> t)=\frac{(\lambda t)^0}{0\,!}e^{-\lambda t}=e^{-\lambda t} FT(T>t)=0!(λt)0eλt=eλt

即, t t t时间内无人到达的概率。 那么显然,
F T ( T ≤ t ) = 1 − e − λ t F_T(T\leq t)=1-e^{-\lambda t} FT(Tt)=1eλt

f T ( t ) = ∂ F T ( t ) ∂ t = λ e − λ t f_T(t)=\frac{\partial F_T(t)}{\partial t}=\lambda e^{-\lambda t} fT(t)=tFT(t)=λeλt

当当, 指数分布出来了。这里我们在强调一下定义, λ \lambda λ 指的是在单位时间内到达的个数, 这个单位时刻可以是秒可以是分可以是小时; 另一方面, t t t 这个的意思是说 t t t 倍的单位时间.

二项分布,指数分布和正态分布之间的关系

在这里插入图片描述

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值