通过形象理解线性代数(一)——什么是线性变换?,我们已经知道,原来矩阵的作用就是对向量的线性变换,而且更具体地讲,是对原空间的基底的变换。如果原空间的基底是,那么变换后的新的基底应该就相当于用A对旧的基底进行变换(缩放和旋转),并且新的基底(,)。其中代表矩阵的列向量。
一、行列式与两组基所围成的面积之间的巧合
示例
对于矩阵,相当于把原来的基变成了,那么两组基所围成的面积,在图上看,得到,分别是1和6,两者之比为6.
而与此同时,矩阵的行列式,是不是很巧合?所以我们先有一个感性的认识,矩阵的行列式就是在变换过程中的某个区域的面积的变化倍数。
可能你又要问了,但是行列式会有正负啊?面积怎么会有正负呢?
其实面积也有方向的概念。在原空间上,是在的顺时针方向,所以面积为正。如果是在的逆时针方向,那么面积就是负的,如果在同一方向(共线),那么面积就是0。如果考虑到角度的方向性,是不是和内积中的有着异曲同工之妙?
同理,在高维空间中,体积之比就是行列式。行列式为0,即非满秩,也即是空间的维度比原空间降低了。
二、行列式表达式与面积的关系
原基所组成的面积为1,拉伸之后的基所组成的面积如图,最后推导可得到行列式表达式。
三、矩阵相乘的行列式
和是相等的。