Compression with Bayesian Implicit NeuralRepresentations《阅读笔记》

本文介绍了一种新的数据压缩方法COMBINER,利用BayesianImplicitNeuralRepresentations(INR)和变分自编码器,通过学习对角高斯先验和后验,实现对数据的有效压缩,同时考虑了速率-失真权衡。文章还提出了迭代学习先验参数的算法以优化编码效率。
摘要由CSDN通过智能技术生成

文章标题:Compression with Bayesian Implicit Neural Representations

文章链接:https://arxiv.org/pdf/2305.19185.pdf

一、简介

        本文通过将单个数据视为坐标映射到值的连续信号,训练一个隐式神经网络表示(INR)网络来进行编码其权重实现压缩。为了使其达到更好的效果,参考基于VAE的端到端压缩模型方法,把INR拓展到变分贝叶斯中,将权重的变分后验分布q过拟合到数据而非点估计。称之为贝叶斯隐式神经表示压缩(COMBINER)

图1:所提出的COMBINER框架

二、相关工作

1. INR网络(Implict neural representations)

        将数据D视为点集,其中每一个点都可以对应坐标信号值对\left ( x,y \right ),并且过拟合小神经网络f\left ( x|w \right ),神经网络通常是由权重w参数化的多层感知机MLP来表示,这就称之为INR。最近研究中的压缩思路多为通过压缩INR的权重w,来起到压缩数据集D。但其存在的问题是假设w是均匀编码分布的,导致比特率的恒定,且只使用失真来作为损失函数,因此控制压缩率只能改变权重的数量,这显然不够合理,所以本文通过变分贝叶斯神经网络来解决这个问题。

2. 变分贝叶斯神经网络

        引入先验p(w),变分后验q(w|D),由此,信息内容可以由KL散度来度量:D_{KL}[q_{w}||p_{w}]

如果失真度为\Delta,而要求比特率不超过C,则优化目标可以写为:

        对于这样一个优化问题,可以引入松弛变量,优化它的拉格朗日对偶:

        即通过优化最终的等式,就相当于实现了速率-失真的权衡优化。

3. A*相对熵编码

        对单个权重样本w-q_{w},采用相对熵编码而非量化点估计来进行熵编码,在本文中,采用了深度有限的全局约束A*编码。

三、贝叶斯隐式神经表示压缩

        在本文中,只考虑对角的高斯先验p_{w}=N(\mu_{p}, diag(\sigma _{p}) )和后验q_{w}=N(\mu_{q}, diag(\sigma _{q}) )

3.1 在训练集上学习模型先验

        为了保证COMBINER的性能,必须在网络权重中找到一个好的先验p_{w},因为它作为A*编码的建议分布,直接影响编码效率。本文提出了一种迭代算法来学习先验参数\theta _{p} = {\mu _{p}, \sigma _{p}},这些参数将在训练集\begin{Bmatrix} D_{1} \cdots D_{M} \end{Bmatrix}上最小化率失真目标:

         提出了一种坐标下降算法来优化等式中的目标,随机初始化模型先验和后验,并交替以下两个步骤来优化\begin{Bmatrix} q_{w}^{(i)} \end{Bmatrix}\theta _{p}

        1. 优化变分后验:固定先验参数\theta _{p},使用梯度下降的局部重参数化技巧来优化后验,优化上述等式的问题可以分为M个独立的问题并行执行:

        2. 更新先验:固定后验参数 \begin{Bmatrix} q_{w}^{(i)} \end{Bmatrix},计算来更新模型先验:

 该算法的伪代码:

  • 9
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值