ICLR2023文章分享——嵌入式傅里叶增强低照度图像

标题:

EMBEDDING FOURIER FOR ULTRA-HIGH-DEFINITION LOW-LIGHT IMAGE ENHANCEMENT

开源代码​​​​​​Embedding Fourier for Ultra-High-Definition Low-Light Image Enhancement

1. 文章简介

        提出了一种增强低照度的超高清图片的方案 UHDFour,将傅里叶变换嵌入仅级联网络中。这种思想起源于傅里叶域的两种特征:1)大部分的亮度信息会集中在振幅上,而噪声则和相位更相关。2)高清图像与低清图像具有相似的振幅模式。

        因此。引入傅里叶变换,就可以把振幅和相位分开处理,避免增强亮度的时候放大噪声。

2. 网络结构

        

        整个网络结构如下,大致分为两部分,LRNet即低分辨率处理网络,HRNet,高分辨率处理网络,LRNet部分包含四个FouSpa块,它占据了整个网络绝大部分的计算量,因此用双线性插值将特征下采样到原始分辨率的1/8。经过FouSpa后的特征送入FFT,分别得到振幅Ar和相位Pr的特征,同时Conv卷积整流特征,得到低分结果 H/8×W/8×C。

        原始输入x的其中一支会直接以PixelUnshuffle(8x)重塑为H×W×C×64,输入到Adjustment块中,并在调整后以Pixelshuffle再重塑为原始大小,最终与上采样特征结合以估计出正常图像。

FouSpa块:

        该块用于在傅里叶域和空间域中并行执行增强,在傅里叶域中执行相位/振幅增强,空间域中执行特征增强。在傅里叶分支中,FFT获取振幅A和相位P,然后分别进入两个1*1的卷积中处理,这样是为了避免结构信息被破坏。再用IFFT转移为空间域,并把它与空间特征串联。空间域分支主要进行卷积操作,以模拟空间域的结构依赖性。傅里叶分支则关注全局的信息。

Adjustment块:

        接受上采样的Xpu和细化的振幅Ar和相位Pr后,使用空间特征变换SFT对Xpu经过FFT的结果进行调制。而空间域则采用和FouSpa中相同的方法。         

其余结果部分请自行阅读的原文吧,这里因为对网络结构感兴趣,就记录了一下。

### ICLR 2023 指纹识别研究概述 ICLR(国际学习表征会议)作为机器学习领域的重要学术活动,在2023年的会议上确实涵盖了多种生物特征识别技术的研究进展,其中包括指纹识别方向的工作。然而,具体到指纹识别这一细分领域,ICLR更倾向于关注其背后的通用技术和理论框架的发展。 #### 图神经网络与指纹匹配 一项值得注意的研究探讨了如何利用图神经网络(GNNs)改进指纹匹配算法的效果[^1]。这项工作借鉴了Weisfeiler-Lehman(WL)检验的思想,这是一种高效地区分图形结构差异的技术。研究人员发现WL测试中的节点标签聚合过程与GNN的信息传递机制存在相似之处,因此尝试构建基于GNN的新型指纹表示模型。这类模型不仅能够捕捉局部细节特征,还能有效地建模全局拓扑关系,从而提高了指纹对比任务的表现。 #### 自监督学习增强指纹质量评估 另一篇相关文章聚焦于通过自监督卷积神经网络(CNN)提升指纹图像的质量评价能力[^2]。该研究提出了一个鲁棒性强且无需大量标注样本即可完成训练的学习框架。此方法特别适用于野外采集条件下获取的质或部分损坏的指纹图片预处理环节,有助于后续的身份验证流程更加稳定可靠。 ```python import torch.nn as nn class FingerprintQualityAssessment(nn.Module): def __init__(self): super(FingerprintQualityAssessment, self).__init__() # Define layers of the CNN architecture here def forward(self, x): # Implement forward pass logic using defined layers return output ``` 尽管上述两项成果并非直接针对传统意义上的指纹识别系统优化,但从长远来看,它们所提供的创新思路和技术手段无疑将推动整个行业向着更高层次发展。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值