RTX 4070 销量不佳欲降价,消息称 NV 将断供 1 个月

NVIDIA由于RTX4070显卡销售不理想,决定暂停对中国区AIC品牌商供应芯片一个月,导致市场价格继续下跌。RTX4070在性能与功耗上有优势,但价格相比RTX3080更高,消费者更倾向于选择后者。此举显示NVIDIA可能将重心转向企业级市场和AI算力领域。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

据报道,据wccftech消息,RTX 4070显卡上市后销量不佳的情况已经引起了NVIDIA注意,为了抑制厂商和渠道拉低价格,NVIDIA内部讨论后做出了对中国区AIC品牌商停止RTX 4070芯片一个月供应的决定。

断供消息出来之后,RTX 4070依旧下跌,两天后秋名山上的万丽RTX 4070跌破4000元。也就是说,RTX 4070在不到10天的时间里累计跌幅16.64 %,破发又快又狠。在显卡卖不动的时候,老黄为了维持高毛利并将更多的资源倾斜企业级市场(AI算力),对民用市场断供一个月芯片,历史踏着相似的韵脚,又没那么相似。

目前RTX 4070的传统游戏性能是和上代RTX 3080是非常接近的,但是功耗却大大降低,同等性能下,功耗比RTX 3080差100W左右,能耗比非常优秀。现在显卡不只是性能问题,你要想玩点ai,那就没法接受amd了,amd要想突破最好是在ai上能插一脚。

RTX 4070的核心规模只有RTX 4090的35%,而在过往几代显卡中,70系列的核心规模通常都是旗舰卡的50%左右甚至以上,核心规模砍得这么惨的显卡通常是60系列显卡。

而RTX3080目前的价格,已经下滑到4000元-4500元区间,比RTX4070还要便宜,所以有需求的消费者宁愿选择RTX3080,而不是定价更高的RTX4070。

这代只有4090是基于正常逻辑的定价,90级别价格再高,那也是旗舰,也是门面,买的人不会在乎这个钱。

### RT-DETRv3 网络结构分析 RT-DETRv3 是一种基于 Transformer 的实时端到端目标检测算法,其核心在于通过引入分层密集正监督方法以及一系列创新性的训练策略,解决了传统 DETR 模型收敛慢和解码器训练不足的问题。以下是 RT-DETRv3 的主要网络结构特点: #### 1. **基于 CNN 的辅助分支** 为了增强编码器的特征表示能力,RT-DETRv3 引入了一个基于卷积神经网络 (CNN) 的辅助分支[^3]。这一分支提供了密集的监督信号,能够与原始解码器协同工作,从而提升整体性能。 ```python class AuxiliaryBranch(nn.Module): def __init__(self, in_channels, out_channels): super(AuxiliaryBranch, self).__init__() self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1) self.bn = nn.BatchNorm2d(out_channels) def forward(self, x): return F.relu(self.bn(self.conv(x))) ``` 此部分的设计灵感来源于传统的 CNN 架构,例如 YOLO 系列中的 CSPNet 和 PAN 结构[^2],这些技术被用来优化特征提取效率并减少计算开销。 --- #### 2. **自注意力扰动学习策略** 为解决解码器训练不足的问题,RT-DETRv3 提出了一种名为 *self-att 扰动* 的新学习策略。这种策略通过对多个查询组中阳性样本的标签分配进行多样化处理,有效增加了阳例的数量,进而提高了模型的学习能力和泛化性能。 具体实现方式是在训练过程中动态调整注意力权重分布,确保更多的高质量查询可以与真实标注 (Ground Truth) 进行匹配。 --- #### 3. **共享权重解编码器分支** 除了上述改进外,RT-DETRv3 还引入了一个共享权重的解编码器分支,专门用于提供密集的正向监督信号。这一设计不仅简化了模型架构,还显著降低了参数量和推理时间,使其更适合实时应用需求。 ```python class SharedDecoderEncoder(nn.Module): def __init__(self, d_model, nhead, num_layers): super(SharedDecoderEncoder, self).__init__() decoder_layer = nn.TransformerDecoderLayer(d_model=d_model, nhead=nhead) self.decoder = nn.TransformerDecoder(decoder_layer, num_layers=num_layers) def forward(self, tgt, memory): return self.decoder(tgt=tgt, memory=memory) ``` 通过这种方式,RT-DETRv3 实现了高效的目标检测流程,在保持高精度的同时大幅缩短了推理延迟。 --- #### 4. **与其他模型的关系** 值得一提的是,RT-DETRv3 并未完全抛弃经典的 CNN 技术,而是将其与 Transformer 结合起来形成混合架构[^4]。例如,它采用了 YOLO 系列中的 RepNCSP 模块替代冗余的多尺度自注意力层,从而减少了不必要的计算负担。 此外,RT-DETRv3 还借鉴了 DETR 的一对一匹配策略,并在此基础上进行了优化,进一步提升了小目标检测的能力。 --- ### 总结 综上所述,RT-DETRv3 的网络结构主要包括以下几个关键组件:基于 CNN 的辅助分支、自注意力扰动学习策略、共享权重解编码器分支以及混合编码器设计。这些技术创新共同推动了实时目标检测领域的发展,使其在复杂场景下的表现更加出色。 ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值