文献阅读-Self-supervised Multi-view Stereo via Effective Co-Segmentation and Data-Augmentation

Self-supervised Multi-view Stereo via Effective Co-Segmentation and Data-Augmentation

1.四个问题
要解决什么问题?
自监督在多视图立体(MVS)重建中不稳定的问题
用了什么方法解决
为了解决这个问题,提出了一个框架,该框架与由语义协同分割和数据增强引导的更可靠的监督相结合。
特别地,从多视图图像中挖掘相互语义来指导语义一致性。 并且设计了有效的数据增强机制,通过将常规样本的预测视为伪地面实况来规范增强样本的预测,从而确保转换的鲁棒性。
效果如何
在无监督方法中实现性能飞跃,且与一些顶级监督方法媲美
还存在什么问题
( 以前的自监督 MVS 方法很大程度上依赖于相同的颜色恒常性假设,假设不同视图之间的对应点具有相同的颜色。 然在现实场景中,各种因素可能会干扰颜色分布,例如光照条件、反射、噪声等。 因此,理想的自监督损耗很容易被这些常见的颜色干扰所混淆, 导致在具有挑战性的场景中的模糊监督,即颜色恒常性模糊。 )
本文,自监督MVS方法的颜色恒常性歧义问题,不如监督类方法
论文简介:
**摘要:**最近的研究见证了基于视图合成的自监督方法在多视图立体 (MVS) 方面取得了明显进展。 然而,现有方法依赖于不同视图之间的对应点共享相同颜色的假设,这在实践中可能并不总是正确的。 这可能会导致不可靠的自监督信号并损害最终的重建性能。 为了解决这个问题,我们提出了一个框架,该框架与由语义协同分割和数据增强引导的更可靠的监督相结合。 特别地,我们从多视图图像中挖掘相互语义来指导语义一致性。 并且我们设计了有效的数据增强机制,通过将常规样本的预测视为伪地面实况来规范增强样本的预测,从而确保转换的鲁棒性。 在 DTU 数据集上的实验结果表明,我们提出的方法在无监督方法中达到了最先进的性能,甚至可以与监督方法相媲美。 此外,在 Tanks&Temples 数据集上的大量实验证明了所提出方法的有效泛化能力。
网络结构:
在这里插入图片描述

实验结果:
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值