目标检测入门:CVPR2014《R-CNN:Rich feature hierarchies for accurate object detection and semantic segmentat》

研究背景

速度:

经典的目标检测算法使用滑动窗法依次判断所有可能的区域。本文则预先提取一系列较可能是物体的候选区域,之后仅在这些候选区域上提取特征,进行判断。

训练集:

经典的目标检测算法在区域中提取人工设定的特征(Haar,HOG)。本文则需要训练深度网络进行特征提取。可供使用的有两个数据库: 

  • 一个较大的识别库(ImageNet ILSVC 2012):标定每张图片中物体的类别。一千万图像,1000类。 
  • 一个较小的检测库(PASCAL VOC 2007):标定每张图片中,物体的类别和位置。一万图像,20类。 

本文使用识别库进行预训练,而后用检测库调优参数。最后在检测库上评测。

研究方法

RCNN算法分为4个步骤 

  1. 一张图像生成1K~2K个候选区域 
  2. 对每个候选区域,使用深度网络提取特征 
  3. 特征送入每一类的SVM 分类器,判别是否属于该类 
  4. 使用回归器精细修正候选框位置 

这里写图片描述

1.候选区域生成

使用了Selective Search方法从一张图像生成约2000-3000个候选区域。基本思路如下: 

  1. 使用一种过分割手段,将图像分割成小区域 
  2. 查看现有小区域,合并可能性最高的两个区域。重复直到整张图像合并成一个区域位置 
  3. 输出所有曾经存在过的区域,所谓候选区域

候选区域生成和后续步骤相对独立,实际可以使用任意算法进行。

合并规则

优先合并以下四种区域: 

  1. 颜色(颜色直方图)相近的 
  2.  纹理(梯度直方图)相近的 
  3. 合并后总面积小的 
  4. 合并后,总面积在其BBOX中所占比例大的

注:(1)保证合并操作的尺度较为均匀,避免一个大区域陆续“吃掉”其他小区域。例:设有区域a-b-c-d-e-f-g-h。较好的合并方式是:ab-cd-ef-gh -> abcd-efgh -> abcdefgh。不好的合并方法是:ab-c-d-e-f-g-h ->abcd-e-f-g-h ->abcdef-gh -> abcdefgh。(2)保证合并后形状规则。例:左图适于合并,右图不适于合并。 

这里写图片描述

上述四条规则只涉及区域的颜色直方图、纹理直方图、面积和位置。合并后的区域特征可以直接由子区域特征计算而来,速度较快。

多样化与后处理

为尽可能不遗漏候选区域,上述操作在多个颜色空间中同时进行(RGB,HSV,Lab等)。在一个颜色空间中,使用上述四条规则的不同组合进行合并。所有颜色空间与所有规则的全部结果,在去除重复后,都作为候选区域输出。

2.特征提取

预处理

使用深度网络提取特征之前,首先把候选区域归一化成同一尺寸227×227。此处有一些细节可做变化:外扩的尺寸大小,形变时是否保持原比例,对框外区域直接截取还是补灰。会轻微影响性能。

预训练

  • 网络结构:使用AlexNet网络。此网络提取的特征为4096维,之后送入一个4096->1000的全连接(fc)层进行预训练。学习率0.01。
  • 训练数据 :使用ILVCR 2012的全部数据进行训练,输入一张图片,输出1000维的类别标号。

调优训练

  • 网络结构 :同样使用AlexNet网络,最后一层换成4096->21的全连接网络。学习率0.001,每一个batch包含32个正样本(属于20类)和96个背景。
  • 训练数据 :使用PASCAL VOC 2007的训练集,输入一张图片,输出21维的类别标号,表示20类+背景。考察一个候选框和当前图像上所有标定框重叠面积最大的一个。如果重叠比例大于0.5,则认为此候选框为此标定的类别;否则认为此候选框为背景。

3.类别判断

分类器 

对每一类目标,使用一个线性SVM二类分类器进行判别。输入为深度网络输出的4096维特征,输出是否属于此类。由于负样本很多,使用hard negative mining方法。其中正样本为本类的真值标定框。负样本为考察每一个候选框,如果和本类所有标定框的重叠都小于0.3,认定其为负样本。

解释为什么RCNN用SVM做分类而不直接用CNN全连接之后softmax输出:

4.位置精修

边界框回归

目标检测问题的衡量标准是重叠面积:许多看似准确的检测结果,往往因为候选框不够准确,重叠面积很小。故需要一个位置精修步骤。

  • 回归器:对每一类目标,使用一个线性回归器进行精修。正则项λ=10000。输入为深度网络pool5层的4096维特征,输出为xy方向的缩放和平移。
  • 训练样本:判定为本类的候选框中,和真值重叠面积大于0.6的候选框。

对于边界框理解比较透彻的是https://blog.csdn.net/zijin0802034/article/details/77685438/

其中对于x,y 坐标除以宽高的理解:除以宽和高就把一个绝对的中心点差值变化成一个相对(于proposal)的中心点变化差值,可以满足尺度不变性,或者看成公式(1)和(2)的变形。

对于宽高坐标Log形式的的理解:看成公式(3)和(4)的变形。

实验结果

论文发表的2014年,DPM已经进入瓶颈期,即使使用复杂的特征和结构得到的提升也十分有限。本文将深度学习引入检测领域,一举将PASCAL VOC上的检测率从35.1%提升到53.7%。本文的前两个步骤(候选区域提取+特征提取)与待检测类别无关,可以在不同类之间共用。这两步在GPU上约需13秒。同时检测多类时,需要倍增的只有后两步骤(判别+精修),都是简单的线性运算,速度很快。这两步对于100K类别只需10秒。

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值