科研写作-返修文章回复信模板

Title: (题目)
Authors: (作者)
Manuscript ID: 000xxx(返修文章编号)

Dear Editor and Reviewers,
Thank you very much for your valuable comments and suggestions on our manuscript. Following the reviewers’ comments, we have modified and improved our manuscript according to your kind advices and referee’s detailed suggestions. Enclosed please find the responses to the referees. We sincerely hope this manuscript will be acceptable to be published on IEEE Communications Letters.(客套话,最后一句希望在所投期刊发表)

Thank you very much for all your help and looking forward to hearing from you soon.
Best regards
Sincerely yours
Prof. Chen(通讯作者)

Please find the following Response to the comments of referees:

Response to the referee’s comments
Reviewer: 1

Comments to the Author
The submitted manuscript proposed a THz metasuface based on a graphene ribbon and three graphene strips to generate triple plasmon-induced transparency. The proposed structure can be utilized to realize a multifunction switch and optical storage. It can be accepted by IEEE Communications Letters. However, some revisions and questions need to be done / answered first: (第一个审稿意见)
Thank you very much for your valuable comments and suggestions on our manuscript.(客套话,表示感谢)

  1. In the simulation, what is the exact value of the carrier relaxation time (τ) ?.(第一个问题)
    Reply: thank you very much for this important comment. (客套话,表示感谢)
    Generally speaking, the carrier relaxation time can be achieved by τ = μEf / (evF2).(回答问题)
    The content “将所回答的问题加入正文,并在正文标红” has been modified. (Please see the revised manuscript at the second paragraph of page 3).(标明加在正文的位置)
    The reference “45 H. Cheng, S. Chen, P. Yu, X. Y. Duan B. Xie, J. Tian, “Dynamically tunable plasmonically induced transparency” Appl. Phys. Lett., 103(20), 36 (2013).” has been added. (Please see the revised manuscript at the references of page 12)(解决审稿人疑惑最好引用别人文献具有说服力,并将所加参考文献提出并标明位置)
### 使用 AutoGPTQ 库量化 Transformer 模型 为了使用 `AutoGPTQ` 对 Transformer 模型进行量化,可以遵循如下方法: 安装所需的依赖包是必要的操作。通过 pip 安装 `auto-gptq` 可以获取最新版本的库。 ```bash pip install auto-gptq ``` 加载预训练模型并应用 GPTQ (General-Purpose Tensor Quantization) 技术来减少模型大小和加速推理过程是一个常见的流程。下面展示了如何利用 `AutoGPTQForCausalLM` 类来进行这一工作[^1]。 ```python from transformers import AutoModelForCausalLM, AutoTokenizer from auto_gptq import AutoGPTQForCausalLM model_name_or_path = "facebook/opt-350m" quantized_model_dir = "./quantized_model" tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) model = AutoModelForCausalLM.from_pretrained(model_name_or_path) # 加载已经量化的模型或者创建一个新的量化器对象用于量化未压缩过的模型 gptq_model = AutoGPTQForCausalLM.from_pretrained(quantized_model_dir, model=model, tokenizer=tokenizer) ``` 对于那些希望进一步优化其部署环境中的模型性能的人来说,`AutoGPTQ` 提供了多种配置选项来自定义量化参数,比如位宽(bit-width),这有助于平衡精度损失与运行效率之间的关系。 #### 注意事项 当处理特定硬件平台上的部署时,建议查阅官方文档以获得最佳实践指导和支持信息。此外,在实际应用场景之前应该充分测试经过量化的模型以确保满足预期的质量标准。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值