Nature审稿人喜欢的绘图配色分享(附颜色代码)

科研绘图配色分享(附颜色代码)

这篇笔记整理了【Nature正刊绘图配色】,对于写论文或者是参加数学建模比赛

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

### 如何在Python科研绘图中实现三色效果 为了实现在科研绘图中的三色效果,可以利用 `matplotlib` 和 `seaborn` 提供的功能来定制颜色方案。以下是具体方法: #### 使用 Matplotlib 实现三色柱状图 通过设置不同的颜色参数,可以在柱状图中应用三种不同颜色。以下是一个简单的例子[^1]: ```python import matplotlib.pyplot as plt categories = ['A', 'B', 'C'] values = [10, 20, 15] colors = ['#FF9999', '#66B2FF', '#99FF99'] # 自定义三色方案 plt.bar(categories, values, color=colors) plt.title('Three-color Bar Chart') plt.xlabel('Categories') plt.ylabel('Values') plt.show() ``` #### 利用 ColorBrewer 配色方案 ColorBrewer 是一种专业的配色工具,提供了多种科学可视化友好的颜色组合[^2]。可以通过导入其预设的颜色主题来快速创建美观的图表。例如,在 Matplotlib 中可以直接加载这些颜色: ```python from palettable.colorbrewer.qualitative import Set3_12 colors = Set3_12.mpl_colors[:3] # 获取前三种颜色作为三色方案 plt.bar(categories, values, color=colors) plt.title('Bar Chart with ColorBrewer Colors') plt.xlabel('Categories') plt.ylabel('Values') plt.show() ``` #### 结合 Seaborn 进行高级美化 Seaborn 是基于 Matplotlib 的高层次数据可视化库,支持更复杂的样式调整。它也内置了许多优秀的调色板,适合用于科学研究中的三色设计[^3]。 下面展示如何使用 Seaborn 创建带有三色渐变效果的散点图: ```python import seaborn as sns import numpy as np sns.set_theme(style="whitegrid") # 数据生成 data = {'x': np.random.rand(30), 'y': np.random.rand(30)} df = pd.DataFrame(data) palette = sns.color_palette("hsv", n_colors=3) # 定义HSV空间下的三色彩盘 ax = sns.scatterplot(x='x', y='y', data=df, palette=palette, hue=np.repeat(['Red', 'Green', 'Blue'], 10)) ax.set_title('Scatter Plot with Three Distinct Colors') plt.show() ``` 以上代码片段展示了如何灵活运用 Python 工具链完成高质量的三色科研绘图任务。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值