大模型token和字符串的关系

一 主要区别

  • token 是使用分词器拆分后的最小单位不同的分词方式会导致同样的字符具有不同的token数量。如你好,可以拆分为【你、好】两个token, 【你好】一个token。

  • 同一个文本的 Token 数量可能远少于字符数(英文)或 接近字符数(中文)。


在自然语言处理中,token 是文本处理的基本单元,而字符是书写系统的最小单位。二者的关系取决于具体的分词方法:

  1. 字符级分词
    每个字符直接作为 token。对于中文“你好”(2个字符),会被分为 2个token(“你”和“好”)。

  2. 子词分词(如BPE、WordPiece)

    • 如果“你好”在训练数据中频繁出现,可能合并为 1个token

    • 否则会被拆分为 2个token(常见于多语言模型,如GPT系列)。

  3. 实际验证(以OpenAI为例)
    使用GPT-3/GPT-4的tiktoken分词器测试,“你好”通常被分为 2个token,因为中文字符常被单独编码。

总结

  • 在大多数情况下(尤其是多语言模型),“你好”对应 2个token

  • 特定中文优化模型可能合并为1个token,需具体测试分词器。

二 字符(Character)

定义
  • 字符是书写系统中的最小单位,代表一个可见的符号或控制符号。

  • 例如:

    • 英文:aB?空格 等。

    • 中文:(逗号)等。

    • 数字或符号:1$% 等。

  • 每个字符在计算机中通常对应一个编码(如 Unicode)。

特点
  • 原子性:字符不可再拆分。

  • 直观性:直接对应文本的视觉形态。

  • 长度固定:例如,“你好”包含 2 个字符。

例子
  • 句子 Hello, 世界! 的字符分解:

    H, e, l, l, o, ,,  , 世, 界, !

    共 10 个字符(包括空格和标点)

三 Token(词元)

定义
  • Token 是自然语言处理(NLP)中文本处理的基本单元,是模型输入的最小单位。

  • 如何生成 Token? 取决于分词方法(Tokenization):

    1. 词级别分词(Word-based)
      将文本按词语分割。例如:“我爱编程” → ["我", "爱", "编程"](3 tokens)。

    2. 子词分词(Subword-based)
      将复杂词拆分为常见子词。例如:“unhappy” → ["un", "happy"](2 tokens)。

    3. 字符级别分词(Character-based)
      每个字符直接作为 Token。例如:“你好” → ["你", "好"](2 tokens)。

特点
  • 灵活性:Token 的粒度可粗(词)可细(字符)。

  • 模型依赖性:不同模型使用不同的分词规则(如 GPT 用 BPE,BERT 用 WordPiece)。

  • 功能导向:Token 的目的是让模型高效学习和处理文本。

例子
  • 英文"ChatGPT is powerful!"
    使用子词分词(BPE)可能分解为:

["Chat", "G", "PT", " is", " powerful", "!"] → 6 tokens

中文“自然语言处理”
使用子词分词可能分解为:

["自然", "语言", "处理"] → 3 tokens

或者字符分词:

["自", "然", "语", "言", "处", "理"] → 6 tokens

四 Token 和字符的关系

特征字符(Character)Token
定义书写系统的最小单位NLP 处理的基本单元
拆分规则固定(按 Unicode 编码)灵活(由分词算法决定)
粒度绝对最小(不可再分)可粗(词)可细(字符或子词)
用途文本存储、显示模型训练、推理、文本分析
例子“A”“你”“1”“!”“Chat”“##GP”“你好”

五 如何计算 Token 数量?

  • 英文:通常 1 个单词 ≈ 1-2 个 Token。

  • 中文:通常 1 个汉字 ≈ 1-2 个 Token(取决于是否被合并为子词)。

  • 实际工具
    使用模型对应的分词器直接测试。例如:

    • OpenAI 的 tiktoken 库:

import tiktoken
enc = tiktoken.get_encoding("cl100k_base")  # GPT-4 的分词器
text = "你好"
print(len(enc.encode(text)))  # 输出 2(2个Token)

六 总结

  • 字符是固定的视觉单位,直接对应文本的书写形式。

  • Token 是灵活的逻辑单位,服务于模型的高效处理。

  • 同一个文本的 Token 数量可能远少于字符数(英文)或 接近字符数(中文)。

### Token在大型语言模型中的作用 Token作为文本的基本单位,在大型语言模型中起着至关重要的作用。当处理一段文字时,首先会将其分割成更小的部分即tokens,这些部分可能是单词、子词或是字符级别[^4]。 #### 处理流程 对于输入的文本序列,模型先对其进行分词操作得到一系列token表示形式。例如,“hello world”会被拆分为两个独立token:“hello”,“world”。这种转换使得计机能够理解人类的语言结构,并进一步应用于各种NLP任务之中。 ```python from transformers import BertTokenizer tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') text = "Hello, how are you?" tokens = tokenizer.tokenize(text) print(tokens) ``` 这段Python代码展示了如何利用Hugging Face库中的BERT分词器来实现上述过程。它将字符串`"Hello, how are you?"`转化为由各个词汇组成的列表形式。 #### 应用场景 1. **机器翻译** 在跨语言交流过程中,源端语句被解析为多个token后送入编码器;解码器则依据所学得的知识生成对应的目标语言表达方式。这种方式极大地提高了多语言间的信息传递效率准确性[^1]。 2. **文本分类** 对于情感分析等特定类型的文本分类问题而言,通过对文档内的关键词汇(即某些特殊的token组合)进行识别与权重计,可以有效判断出整体倾向性或类别归属情况。 3. **问答系统** 当构建智能客服平台或其他形式的自动应答机制时,合理运用token有助于更好地捕捉查询意图以及提供精准的回答建议。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值