VIF,共线相关性理解

多重共线性是指在变量空间中,存在自变量可以近似地等于其他自变量的线性组合

如果将所有自变量用于线性回归或逻辑回归的建模,将导致模型系数不能准确表达自变量对Y的影响。

比如:如果X1和X2近似相等,则模型Y = X1 + X2 可能被拟合成Y = 3 X1 - X2,原来 X2 与 Y 正向相关被错误拟合成负相关,导致模型没法在业务上得到解释。

在评分卡建模中,可能将很多相关性很高的变量加入到建模自变量中,最终得到的模型如果用变量系数去解释自变量与目标变量的关系是不合适的。

相关矩阵是指由样本的相关系数组成的矩阵,自变量相关系数过大意味着存在共线性,同时会导致信息冗余,维度增加。

设置相关系数的阈值,当大于threshold时,删除IV值较小的变量。

VIF(variance inflation factors)VIF =1/(1-R^2) 式中,R^2是以xj为因变量时对其它自变量回归的复测定系数。

VIF越大,该变量与其他的变量的关系越高,多重共线性越严重。如果所有变量最大的VIF超过10,删除最大VIF的变量。

参考:

多重共线性:python中利用statsmodels计算VIF和相关系数消除共线性_ab1112221212的博客-CSDN博客

https://www.cnblogs.com/wqbin/p/11109650.html(可决系数)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值