第三十讲 解耦

本文介绍了如何通过变量代换将耦合的微分方程组解耦,以解决两个下端相通的隔间水位平衡问题。通过建立数学模型,分析水位变化率,最终得出解耦后的方程,展示了解耦方法的一般步骤和应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一,线性的变量代换:
耦合的方程组: { u = a x + b y v = c x + d y \left\{\begin{matrix}u=ax+by\\ v=cx+dy\end{matrix}\right. { u=ax+byv=cx+dy,求u,v
解耦后的两个一阶方程: { u ′ = k 1 u v ′ = k 2 v \left\{\begin{matrix}{u}'=k_{1}u \\ {v}'=k_{2}v\end{matrix}\right. { u=k1uv=k2v,解得: { u = c 1 e k 1 t v = c 2 e k 2 t \left\{\begin{matrix}u=c_{1}e^{k_{1}t} \\ v=c_{2}e^{k_{2}t} \end{matrix}\right. { u=c1ek1tv=c2ek2t

二,例题:
在这里插入图片描述
如图,两个下端相通的隔间(平时关着通道),盛着不同高度的水,右侧隔间体积比左侧大一倍。x表示左隔间水的高度,y表示右隔间水的高。打开通道,经过一段时间后,水通过下端通道,两边水面高度会平齐。
分析
通过下端通道的水的体积=通道的横截面积 x 水的流速(单位:mL/s)
水的流速 ∝ \propto 两边水面的压力差 ∝ \propto 两边水面的高度差。 ∝ \propto 表示正比关系
因此,通过下端通道的水的体积 ∝ \propto 通道的横截面积 x 两边水面的高度差
建模
x ′ = c ( y − x ) {x}'=c(y-x) x=c(yx)
含义:x高度的变化率=比例常数(包含通道横截面积,高度差和压力差之间的比例常数)x两边水面的高度差(考虑x是正向变化,因此是y-x)
同理: y ′ = c ( x − y ) {y}'=c(x-y) y=c(xy)
因为右侧隔间的体积是左边的2倍,所以y高度的变化率是x的一半: y ′ = c ( x − y ) ⋅ 1 2 {y}'=c(x-y)\cdot \frac{1}{2} y=c(xy)21
假设:c=2
建立方程组: { x ′ = − 2 x + 2 y y ′ = x − y \left\{\begin{matrix}{x}'=-2x+2y\\ {y}'=x-y\end{matrix}\right. { x=2x+2yy=xy
解耦
找寻新变量 [ u v ] \begin{bmatrix}u\\ v \end{bmatrix} [uv],这是从新角度分析问题并建模的过程。
设v是高度差: v = x − y v=x-y v=xy,v ∝ \propto 两边水面的压力差
设u是总水量: u = x + 2 y u=x+2y u=x+2y,u是一个常数,因为没有水从外面流进和流走
将原方程组转化为新方程组: { u ′ = x ′ + 2 y ′ = − 2 x + 2 y + 2 ( x − y ) = 0 v ′ = x ′ − y ′ = − 2 x + 2 y − ( x − y ) = − 3 ( x − y ) = − 3 v \left\{\begin{matrix}{u}'={x}'+2{y}'=-2x+2y+2(x-y)=0 \\ {v}'={x}'-{y}'= -2x+2y-(x-y)=-3(x-y)=-3v \end{matrix}\right. { u=x+2y=2x+2y+2(xy)=0v=xy=2x+2y(xy)=3(xy)=3v
新变量u和v使原方程组解耦了。
解得: { u = c 1 v = c 2 e − 3 t \left\{\begin{matrix}u=c_{1}\\ v=c_{2}e^{-3t}\end{matrix}\right. { u=c1v=c2e3t
转化为x和y的解(非必须): { x = 1 3 ( u + 2 v ) = 1 3 ( c 1 + 2 c 2 e − 3 t ) y = 1 3 ( u − v ) = 1 3 ( c 1 − c 2 e − 3 t ) \left\{\begin{matrix}x=\frac{1}{3}(u+2v)=\frac{1}{3}(c_{1}+2c_{2}e^{-3t}) \\ y=\frac{1}{3}(u-v)=\frac{1}{3}(c_{1}-c_{2}e^{-3t})\end{matrix}\right. { x=31(u+2v)=31(c1+2c2e3t)y=31(uv)=31(c1c2e3t)
化为矩阵形式: [ x y ] = 1 3 c 1 [ 1 1 ] + 1 3 c 2 [ 2 − 1 ] e − 3 t \begin{bmatrix}x\\ y\end{bmatrix}=\frac{1}{3}c_{1}\begin{bmatrix}1\\ 1\end{bmatrix}+\frac{1}{3}c_{2}\begin{bmatrix}2\\ -1\end{bmatrix}e^{-3t} [xy]=31c1[11]+31c2[21]e3t

三,一般的方法:
不是所有情况都可以解耦,解耦的条件:

  1. A的特征值必须都是实数
  2. A的特征值必须是完备特征值(A是实数nxn的对称矩阵)(见二十六讲)

基变换(寻找新变量 [ u v ] \begin{bmatrix}u\\ v\end{bmatrix} [uv]):
设原方程组: x ⃗ ′ = A x ⃗ {\vec{x}}'=A\vec{x} x =Ax x ⃗ = [ x y ] , u ⃗ = [ u

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值