1.1 晶体
半导体晶体
(1)定义
一种基于特定单胞规则重复的结构,可填充所有空间。
(2)晶胞
通过规则重复来构造晶体的单位。
(3)晶格参数
单位晶胞的重复长度
(4)GaAs的晶格常数
(5)Si与GaAs的带隙结构
- Si:间接带隙结构
- GaAs:直接带隙结构
1.2 化合物半导体
化合物半导体材料III-V族元素
(1)III族
Al、Ga、In
(2)V族
N、P、As、Sb
(3)IV族(用于光电探测器)
Si、Ge
声子(phonon)
由于动量守恒,在E-k图上垂直跃迁间接带隙需要额外的动量,通常来自晶格振动产生的声子,因此间接跃迁是三粒子过程。
光子的吸收与辐射
有效质量近似(重点)
(1)动量与动能公式
- 动量: p = ℏ k p=\hbar k p=ℏk
- 动能:
E
=
p
2
2
m
0
=
ℏ
2
k
2
2
m
0
E=\frac{p^{2}}{2 m_{0}}=\frac{\hbar^{2} k^{2}}{2 m_{0}}
E=2m0p2=2m0ℏ2k2
(2)有效质量下的动能
E
=
ℏ
2
k
2
2
m
∗
E=\frac{\hbar^{2} k^{2}}{2 m^{*}}
E=2m∗ℏ2k2
(3)有效质量倒数
1 m ∗ = 1 ℏ 2 [ d 2 E d k 2 ] \frac{1}{m^{*}}=\frac{1}{\hbar^{2}}\left[\frac{d^{2} E}{d k^{2}}\right] m∗1=ℏ21[dk2d2E]
直接带隙半导体的截止波长
λ g ( microns ) = h c e 1 E g ( e V ) ≅ 1.24 E g ( e V ) \lambda_{g(\text { microns })}=\frac{h c}{e} \frac{1}{E_{g(e V)}} \cong \frac{1.24}{E_{g(e V)}} λg( microns )=ehcEg(eV)1≅Eg(eV)1.24
态密度(DOS)
(1)能量态密度
单位晶体体积中单位能量中的态数
(2)方晶体边长
L
x
=
N
x
a
L
y
=
N
y
a
L
z
=
N
z
a
L_x=N_xa\\L_y=N_ya\\L_z=N_za
Lx=NxaLy=NyaLz=Nza
(3)晶体体积
V
=
L
x
L
y
L
z
V=L_xL_yL_z
V=LxLyLz
(4)空间周期性
ψ
k
(
x
+
L
x
,
y
,
z
)
=
ψ
k
(
x
,
y
+
L
y
,
z
)
=
ψ
k
(
x
,
y
,
z
+
L
z
)
=
ψ
k
(
x
,
y
,
z
)
\psi_{k}\left(x+L_{x}, y, z\right)=\psi_{k}\left(x, y+L_{y}, z\right)=\psi_{k}\left(x, y, z+L_{z}\right)=\psi_{k}(x, y, z)
ψk(x+Lx,y,z)=ψk(x,y+Ly,z)=ψk(x,y,z+Lz)=ψk(x,y,z)
或表示为:
exp
(
i
k
x
(
x
+
L
x
)
)
=
exp
(
i
k
x
x
)
\exp \left(i k_{x}\left(x+L_{x}\right)\right)=\exp \left(i k_{x} x\right)
exp(ikx(x+Lx))=exp(ikxx)
(5)边界条件
exp
(
i
k
x
L
x
)
=
1
\exp \left(i k_{x} L_{x}\right)=1
exp(ikxLx)=1
(6)量子化结论
k x = 0 , ± 2 π L x , ± 4 π L x , ± 6 π L x , … … ± N x π L x k_{x}=0, \pm \frac{2 \pi}{L_{x}}, \pm \frac{4 \pi}{L_{x}}, \pm \frac{6 \pi}{L_{x}}, \ldots \ldots \pm \frac{N_{x} \pi}{L_{x}} kx=0,±Lx2π,±Lx4π,±Lx6π,……±LxNxπ
k空间允许态
点表示允许存在的态,厚度为dk的环用于计算态密度。
态密度结论
(1)波矢与能量的微分关系
d
k
d
E
=
1
2
2
m
∗
ℏ
2
1
E
\frac{d k}{d E}=\frac{1}{2} \sqrt{\frac{2 m^{*}}{\hbar^{2}}} \frac{1}{\sqrt{E}}
dEdk=21ℏ22m∗E1
(2)态密度形式的方程及1/2次幂结论
g
(
E
)
d
E
=
g
(
k
)
d
3
k
=
2
(
2
π
)
3
4
π
k
2
d
k
g(E) d E=g(\mathbf{k}) d^{3} \mathbf{k}=\frac{2}{(2 \pi)^{3}} 4 \pi k^{2} d k
g(E)dE=g(k)d3k=(2π)324πk2dk
g
(
E
)
d
E
=
1
2
π
2
(
2
m
∗
ℏ
2
)
3
/
2
E
1
/
2
g(E) d E=\frac{1}{2 \pi^{2}}\left(\frac{2 m^{*}}{\hbar^{2}}\right)^{3 / 2} E^{1 / 2}
g(E)dE=2π21(ℏ22m∗)3/2E1/2
不同自由度下的态密度函数 g ( E ) g(E) g(E)
半导体统计学电子分布
(1)Fermi-Dirac分布函数(靠近费米能级)
f
e
(
E
,
T
)
=
1
1
+
exp
(
E
−
E
F
k
B
T
)
f_{e}(E, T)=\frac{1}{1+\exp \left(\frac{E-E_F}{k_{B} T}\right)}
fe(E,T)=1+exp(kBTE−EF)1
(2)Maxwell-Boltzman分布(远离费米能级)
f M − B ( E , T ) = A exp ( − E k B T ) f_{M-B}(E, T)=A \exp \left(\frac{-E}{k_{B} T}\right) fM−B(E,T)=Aexp(kBT−E)
其中,
A
=
exp
(
E
F
k
B
T
)
A=\exp \left(\frac{E_F}{k_{B} T}\right)
A=exp(kBTEF)
(3)单位能量间隔的电子数量
n
(
E
)
=
f
(
E
,
T
)
g
(
E
)
n(E)=f(E, T) g(E)
n(E)=f(E,T)g(E)
(4)系统总电子数
N
=
∫
f
(
E
,
T
)
g
(
E
)
d
E
N=\int f(E, T) g(E) d E
N=∫f(E,T)g(E)dE
(5)费米能级
E F = ℏ 2 2 m ∗ ( 3 π 2 N ) 2 / 3 E_{F}=\frac{\hbar^{2}}{2 m^{*}}\left(3 \pi^{2} N\right)^{2 / 3} EF=2m∗ℏ2(3π2N)2/3
费米积分
F ( x ) = ∫ 0 ∞ y 1 / 2 1 + exp ( y − x ) d y F(x)=\int_{0}^{\infty} \frac{\mathrm{y}^{1 / 2}}{1+\exp (\mathrm{y}-\mathrm{x})} d y F(x)=∫0∞1+exp(y−x)y1/2dy
能量态简并
指具有给定能量的不止一个量子态。
掺杂材料中的载流子浓度
电子浓度
n
e
=
n
c
exp
[
−
(
ε
c
−
μ
)
/
τ
]
n_{e}=n_{c} \exp \left[-\left(\varepsilon_{c}-\mu\right) / \tau\right]
ne=ncexp[−(εc−μ)/τ]
空穴浓度
n
h
=
n
v
exp
[
−
(
μ
−
ε
v
)
/
τ
]
n_{h}=n_{v} \exp \left[-\left(\mu-\varepsilon_{v}\right) / \tau\right]
nh=nvexp[−(μ−εv)/τ]
电离施主浓度
n
d
+
=
n
d
1
+
2
exp
(
μ
−
ε
d
)
/
τ
n_{d}^{+}=\frac{n_{d}}{1+2 \exp \left(\mu-\varepsilon_{d}\right) / \tau}
nd+=1+2exp(μ−εd)/τnd
电离受主浓度
n a − = n a 1 + 2 exp ( ε a − μ ) / τ n_{a}^{-}=\frac{n_{a}}{1+2 \exp \left(\varepsilon_{a}-\mu\right) / \tau} na−=1+2exp(εa−μ)/τna
电中性方程
n − = n e − + n a − = n + = n h + + n d + n^{-}=n_{e}^{-}+n_{a}^{-}=n^{+}=n_{h}^{+}+n_{d}^{+} n−=ne−+na−=n+=nh++nd+
掺杂能级
ε d = ε g − Δ ε d \varepsilon_{d}=\varepsilon_{g}-\Delta \varepsilon_{d} εd=εg−Δεd
重掺杂方程组
N d + = N d ( 1 − f D ( E ) ) = N d 1 + e ( E f − E d ) / k T n = N d + + p = N d + + n i 2 n n = N c e − ( E c − E f ) / k T \begin{array}{l} N_{d}^{+}=N_{d}\left(1-f_{D}(E)\right)=\frac{N_{d}}{1+e^{\left(E_{f}-E_{d}\right) / k T}} \\ n=N_{d}^{+}+p=N_{d}^{+}+\frac{n_{i}^{2}}{n} \\ n=N_{c} e^{-\left(E_{c}-E_{f}\right) / k T} \end{array} Nd+=Nd(1−fD(E))=1+e(Ef−Ed)/kTNdn=Nd++p=Nd++nni2n=Nce−(Ec−Ef)/kT
掺杂剂
- n型掺杂剂:引入更多的电子
- p型掺杂剂:引入更多的空穴