神经网络可视化工具Zetane的使用方法

本文介绍了如何将PyTorch模型(如ResNet18)的.pth文件转换为ONNX格式,包括设置模型、数据预处理、使用torch.onnx.export进行导出,以及安装ONNX模块并提供上传模型的示例。
摘要由CSDN通过智能技术生成

安装Zetane

模型文件格式转换——.pth文件转换为ONNX文件

import torch
import torch.nn as nn
import torchvision
import torchvision.transforms as transforms
from torchvision.models import resnet18

# 设置模型
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = resnet18(pretrained=False, num_classes=10)
model.conv1 = nn.Conv2d(3, 64, 3, stride=1, padding=1, bias=False)
model.maxpool = nn.MaxPool2d(1, 1, 0)
model.load_state_dict(torch.load('D:\可视化\model.pth'))
model = model.to(device)
model.eval()


# 数据转换
transform = transforms.Compose([
    transforms.Resize(32),
    transforms.RandomHorizontalFlip(),
    transforms.ToTensor(),
    transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])

# 加载数据集
train_dataset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform)
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=1, shuffle=True)

# 获取一张图片
image, _ = next(iter(train_loader))

# 导出模型
onnx_path = "D:\可视化\model.onnx"
torch.onnx.export(model, image.to(device), onnx_path, verbose=True)

安装ONNX模块清华源镜像

pip install -i https://pypi.tuna.tsinghua.edu.cn/simple onnx

上传模型文件(支持ONNX,Keras (.h5)和ZTN文件格式)

image.png

使用示例

  • 右键拖动画面或视野维度
  • 鼠标滚轮缩放画面

image.png
image.png

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值