【配电网】考虑设备动作损耗的配电网分布式电压无功优化附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

配电网作为电力系统与用户之间的直接接口,其安全、经济运行对提高供电质量和保障用户用电至关重要。随着分布式电源(DG)的渗透率不断提高,配电网面临着电压波动、潮流拥堵等新的挑战。传统的集中式优化方法难以适应分布式电源的快速变化和网络拓扑的复杂性。因此,分布式电压无功优化(Volt-Var optimization, VVO)成为了研究的热点。然而,现有研究在考虑设备动作损耗方面尚存在不足,尤其是在分布式优化框架下,如何有效协调分布式电源、有载调压变压器(OLTC)等设备的动作,以最小化设备损耗并改善电压质量,是一个亟待解决的关键问题。本文将深入探讨考虑设备动作损耗的配电网分布式电压无功优化方法,分析现有方法的局限性,并展望未来的发展方向。

配电网电压无功优化面临的挑战

传统的配电网运行通常采用集中式控制方式,通过中央控制器收集全网信息,进行统一的电压无功优化调度。然而,随着分布式电源的接入,这种集中式方法面临诸多挑战:

  • 信息收集困难:

     分布式电源数量众多且位置分散,实时收集其运行状态和预测出力数据具有挑战性,导致中央控制器无法获得准确的全网信息。

  • 计算复杂度高:

     配电网拓扑结构复杂,网络节点数量庞大,集中式优化需要解决高维非线性优化问题,计算复杂度高,难以满足实时性要求。

  • 通信依赖性强:

     集中式优化依赖于可靠的通信网络,一旦通信中断,将导致优化算法失效,影响配电网的稳定运行。

  • 难以适应动态变化:

     分布式电源出力具有随机性和波动性,集中式优化难以快速响应这些动态变化,导致电压波动和潮流拥堵。

分布式电压无功优化方法能够有效克服上述挑战。它通过将优化任务分解为多个子问题,由分布式控制器独立求解,实现对局部网络的电压无功控制。这种方法具有计算速度快、通信依赖性低、易于扩展和适应动态变化的优点。

设备动作损耗在配电网电压无功优化中的重要性

在配电网电压无功优化过程中,通常需要调整分布式电源的无功出力、有载调压变压器的档位以及其他无功补偿设备的投切状态。每一次动作都会产生一定的损耗,包括:

  • 有载调压变压器(OLTC)的切换损耗:

     OLTC的每一次档位切换都会产生电弧,磨损触头,缩短设备寿命,并消耗电能。

  • 无功补偿设备的投切损耗:

     无功补偿电容器的投切会产生涌流,冲击开关设备,降低其使用寿命,并产生开关损耗。

  • 分布式电源控制动作损耗:

     频繁地改变分布式电源的无功出力也会造成设备磨损和能量损耗。

如果忽略设备动作损耗,可能会导致优化结果频繁动作设备,虽然改善了电压质量,但却增加了设备损耗,降低了设备使用寿命,甚至可能导致设备故障,最终得不偿失。因此,在配电网电压无功优化中,必须充分考虑设备动作损耗,在电压质量和设备寿命之间取得平衡。

现有方法的局限性

目前,针对配电网电压无功优化的研究已经取得了显著进展,但大部分研究在考虑设备动作损耗方面仍然存在一些局限性:

  • 简化模型:

     许多研究采用简化的设备动作损耗模型,例如简单的开关次数或档位切换次数的惩罚项,无法准确反映实际的损耗情况。

  • 集中式方法为主:

     虽然有些研究考虑了设备动作损耗,但大多采用集中式优化方法,难以适应分布式电源的高渗透率和配电网的复杂性。

  • 缺乏分布式协调机制:

     在分布式优化框架下,各个分布式控制器独立运行,容易出现协调问题,导致整体优化效果不佳,甚至增加设备动作损耗。

  • 忽略时序相关性:

     许多研究只考虑单个时间段的优化,忽略了不同时间段之间的相关性,导致优化结果缺乏全局性,容易造成设备频繁动作。

考虑设备动作损耗的分布式优化方法

为了克服现有方法的局限性,需要研究更加精细化的设备动作损耗模型,并设计有效的分布式优化算法,实现对配电网电压无功的协调控制。以下是一些可能的研究方向:

  • 建立精细化的设备动作损耗模型:

     考虑OLTC的电弧能量、触头磨损、开关次数等因素,建立准确的损耗模型。对无功补偿设备,考虑涌流大小、开关次数、触头寿命等因素,建立损耗模型。对分布式电源,考虑无功出力变化速率、设备运行状态等因素,建立损耗模型。

  • 设计基于博弈论的分布式优化算法:

     将分布式电源、OLTC等设备视为独立的参与者,通过博弈论的方法,协调它们的动作,实现整体优化目标。例如,可以使用纳什均衡或合作博弈来解决分布式控制器的协调问题。

  • 引入模型预测控制(MPC):

     基于预测未来一段时间内的负荷和分布式电源出力情况,采用MPC方法进行优化,可以有效减少设备的频繁动作,提高系统的稳定性。

  • 设计基于强化学习的自适应控制算法:

     利用强化学习算法,让分布式控制器能够自主学习,根据历史数据和当前状态,动态调整控制策略,以最小化设备动作损耗并改善电压质量。

  • 引入数据驱动的故障预测与健康管理(PHM):

     基于设备运行数据,利用机器学习算法预测设备故障,并根据预测结果调整优化策略,避免频繁动作可能造成的设备损坏。

未来发展方向

未来,考虑设备动作损耗的配电网分布式电压无功优化将朝着以下几个方向发展:

  • 多目标优化:

     不仅考虑电压质量和设备动作损耗,还要考虑系统的稳定性、经济性以及环境效益,实现多目标优化。

  • 不确定性建模与优化:

     充分考虑分布式电源出力、负荷需求等因素的不确定性,设计鲁棒的优化算法,确保系统的安全可靠运行。

  • 与高级量测体系(AMI)的深度融合:

     充分利用AMI系统提供的实时数据,提高优化算法的精度和效率。

  • 与其他智能电网技术的协同:

     将电压无功优化与需求响应、微网控制等其他智能电网技术相结合,实现更加高效、可靠、智能的配电网运行。

  • 在线部署与验证:

     将研究成果应用于实际配电网,进行在线部署和验证,不断完善优化算法,提高其适应性和鲁棒性。

⛳️ 运行结果

🔗 参考文献

[1] 张瑞芳,电气工程.基于主从博弈和混合碳政策的园区综合能源系统低碳经济调度[D].东北电力大学[2025-02-18].

[2] 华志强.含分布式发电系统的配电网无功优化研究[D].西安理工大学,2011.DOI:10.7666/d.y2127838.

[3] 符杨,张智泉,李振坤.基于二阶段鲁棒优化模型的混合交直流配电网无功电压控制策略研究[J].中国电机工程学报, 2019, 39(16):11.DOI:10.13334/j.0258-8013.pcsee.180940.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值